1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prisoha [69]
3 years ago
15

A doctor pushes the plunger of syringe down and then pulls it up to a draw liquid into a syringe? give reason please help me wit

h very short answer
Physics
1 answer:
ruslelena [56]3 years ago
4 0

Answer:

When the doctor has the syringe, it is full of air. So, now after the doctor pushes the plunger, hence the air gets released into the medicine container. After this the doctor then takes the plunger and pull it back. Now , the air gets pulled up back into the syringe, but not only does the air come in but also the medicine because of the pressure build up.

If my answer helped, please mark me as the brainliest!!

Thank You!

You might be interested in
Whats the first state discovered?​
larisa [96]

Answer:

The First State Was Delaware. Delaware was made a state in December 7, 1787. It was made a state a week before Pennsylvania.

Give Brainliest if you please

4 0
3 years ago
A car is parked on a steep incline, making an angle of 37.0° below the horizontal and overlooking the ocean, when its brakes fai
patriot [66]

Answer:

a) The speed of the car when it reaches the edge of the cliff is 19.4 m/s

b) The time it takes the car to reach the edge is 4.79 s

c) The velocity of the car when it lands in the ocean is 31.0 m/s at 60.2º below the horizontal

d) The total time interval the car is in motion is 6.34 s

e) The car lands 24 m from the base of the cliff.

Explanation:

Please, see the figure for a description of the situation.

a) The equation for the position of an accelerated object moving in a straight line is as follows:

x =x0 + v0 * t + 1/2 a * t²

where:

x = position of the car at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

Since the car starts from rest and the origin of the reference system is located where the car starts moving, v0 and x0 = 0. Then, the position of the car will be:

x = 1/2 a * t²

With the data we have, we can calculate the time it takes the car to reach the edge and with that time we can calculate the velocity at that point.

46.5 m = 1/2 * 4.05 m/s² * t²

2* 46.5 m / 4.05 m/s² = t²

<u>t = 4.79 s </u>

The equation for velocity is as follows:

v = v0  + a* t

Where:

v = velocity

v0 =  initial velocity

a = acceleration

t = time

For the car, the velocity will be

v = a * t

at the edge, the velocity will be:

v = 4.05 m/s² * 4.79 s = <u>19.4 m/s</u>

b) The time interval was calculated above, using the equation of  the position:

x = 1/2 a * t²

46.5 m = 1/2 * 4.05 m/s² * t²

2* 46.5 m / 4.05 m/s² = t²

t = 4.79 s

c) When the car falls, the position and velocity of the car are given by the following vectors:

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

v =(v0x, v0y + g * t)

Where:

r = position vector

x0 = initial horizontal position

v0x = initial horizontal velocity

t = time

y0 = initial vertical position

v0y = initial vertical velocity

g = acceleration due to gravity

v = velocity vector

First, let´s calculate the initial vertical and horizontal velocities (v0x and v0y). For this part of the problem let´s place the center of the reference system where the car starts falling.

Seeing the figure, notice that the vectors v0x and v0y form a right triangle with the vector v0. Then, using trigonometry, we can calculate the magnitude of each velocity:

cos -37.0º = v0x / v0

(the angle is negative because it was measured clockwise and is below the horizontal)

(Note that now v0 is the velocity the car has when it reaches the edge. it was calculated in a) and is 19,4 m/s)

v0x = v0 * cos -37.0 = 19.4 m/s * cos -37.0º = 15.5 m/s

sin 37.0º = v0y/v0

v0y = v0 * sin -37.0 = 19.4 m/s * sin -37.0 = - 11. 7 m/s

Now that we have v0y, we can calculate the time it takes the car to land in the ocean, using the y-component of the vector "r final" (see figure):

y = y0 + v0y * t + 1/2 * g * t²

Notice in the figure that the y-component of the vector "r final" is -30 m, then:

-30 m = y0 + v0y * t + 1/2 * g * t²

According to our reference system, y0 = 0:

-30 m = v0y * t + 1/2 g * t²

-30 m = -11.7 m/s * t - 1/2 * 9.8 m/s² * t²

0 = 30 m - 11.7 m/s * t - 4.9 m/s² * t²

Solving this quadratic equation:

<u>t = 1.55 s</u> ( the other value was discarded because it was negative).

Now that we have the time, we can calculate the value of the y-component of the velocity vector when the car lands:

vy = v0y + g * t

vy = - 11. 7 m/s - 9.8 m/s² * 1.55s = -26.9 m/s

The x-component of the velocity vector is constant, then, vx = v0x = 15.5 m/s (calculated above).

The velocity vector when the car lands is:

v = (15.5 m/s, -26.9 m/s)

We have to express it in magnitude and direction, so let´s find the magnitude:

|v| = \sqrt{(15.5 m/s)^{2} + (-26.9 m/s)^{2}} = 31.0m/s

To find the direction, let´s use trigonometry again:

sin α = vy / v

sin α = 26.9 m/s / 31.0 m/s

α = 60.2º

(notice that the angle is measured below the horizontal, then it has to be negative).

Then, the vector velocity expressed in terms of its magnitude and direction is:

vy = v * sin -60.2º

vx = v * cos -60.2º

v = (31.0 m/s cos -60.2º, 31.0 m/s sin -60.2º)

<u>The velocity is 31.0 m/s at 60.2º below the horizontal</u>

d) The total time the car is in motion is the sum of the falling and rolling time. This times where calculated above.

total time = falling time + rolling time

total time = 1,55 s + 4.79 s = <u>6.34 s</u>

e) Using the equation for the position vector, we have to find "r final 1" (see figure):

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

Notice that the y-component is 0 ( figure)

we have already calculated the falling time and the v0x. The initial position x0 is 0. Then.

r final 1 = ( v0x * t, 0)

r final 1 = (15.5 m/s * 1.55 s, 0)

r final 1 = (24.0 m, 0)

<u>The car lands 24 m from the base of the cliff.</u>

PHEW!, it was a very complete problem :)

5 0
2 years ago
Please i need help! ill give brainliest toooo!
Igoryamba

Answer:

b

Explanation:

7 0
2 years ago
Read 2 more answers
A baseball player throws a baseball straight up into the air, the ball leaving his hand at time t = 0.0 s. The ball reaches maxi
laiz [17]

The ball should take twice as long to return to its original position as it took to reach its maximum height, so it should return to its original position at t=2.8\,\rm s.

4 0
2 years ago
Free p o i n t s. hurry before admin deletes ;-;
blsea [12.9K]
The answer is 3+5+4 = 10+3 so then you have to add the number to the part of the equation and you will get the answer of five
4 0
2 years ago
Other questions:
  • On an essentially frictionless, horizontal ice rink, a skater moving at 5.0 m/s encounters a rough patch that reduces her speed
    10·1 answer
  • A rocket is dropped out of an airplane at 100 m/s (downward). If the rocket fires causing an upward acceleration of Ct2 and it t
    12·1 answer
  • What of the following is an accurate statement
    13·1 answer
  • Before leaving the house in the morning, you plop some stew in your slow cooker and turn it on Low. The slow cooker has a 160 Oh
    8·1 answer
  • What is the velocity of a wave with a wavelength of 9 meters and a period of 0.006
    10·1 answer
  • Which of the following is the best thermal insulator?
    11·1 answer
  • (don't mind the answer choice selected, I'm not too sure if I'm correct)
    7·1 answer
  • Imagine that someone is sitting down to enjoy a cup of coffee or hot chocolate. Use your experiences to describe how heat flows
    6·2 answers
  • There is given an ideal capacitor with two plates at a distance of 3 mm. The capacitor is connected to a voltage source with 12
    8·1 answer
  • When you eat cereal and then
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!