There are multiple reasons for this. First of all, water is available in almost every place on the Earth. It doesn't pollute the air, doesn't cause health use and is easily handle.
Other factor is the fact that water has a really high specific heat. This means that water, and more specifically steam, can aborb and transport more energy. A lower heat capacity would imply the need to boil more of the liquid to obtain the same amount of energy. This combine with the fact that water expands at a large rate when boiling, combine with everything mentioned previously, and you get a liquid with all the characteristics that a efficient turbine requires to work.
Answer:
In biological taxonomy, a domain (also superregnum, superkingdom, or empire) is a taxon in the highest rank of organisms, higher than a kingdom. ... The three-domain system of Carl Woese, introduced in 1990, with top-level groupings of Archaea, Bacteria, and Eukaryota domains.
Given values:
Mass of the steel ball, m = 100 g = 0.1 kg
Height of the steel ball, h1 = 1.8 m
Rebound height, h2 = 1.25 m
a. PE= mgh
0.1 x 9.8 x 1.8 =
1.764 Joules
b. KE = PE ->
1.764 Joules
c. KE= 1/2 mv square
so v = square root 2ke/m
square root 2 x 1.764/ 0.1
= 5.93 m/s
d. KE=PE=mgh square
0.1 x 9.8 x 1.21 =
1.186 joules
velocity of rebond is square root 2x 1.186/ 0.1 = 4.87 m/s
Answer:
a = 2.22 [m/s^2]
Explanation:
First we have to convert from kilometers per hour to meters per second
![40 [\frac{km}{h}]*[\frac{1h}{3600s}]*[\frac{1000m}{1km}] = 11.11 [m/s]](https://tex.z-dn.net/?f=40%20%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A%5B%5Cfrac%7B1h%7D%7B3600s%7D%5D%2A%5B%5Cfrac%7B1000m%7D%7B1km%7D%5D%20%3D%2011.11%20%5Bm%2Fs%5D)
We have to use the following kinematics equation:

where:
Vf = final velocity = 11.11 [m/s]
Vi = initial velocity = 0
a = acceleration [m/s^2]
t = time = 5 [s]
The initial speed is taken as zero, as the car starts from zero.
11.11 = 0 + (a*5)
a = 2.22 [m/s^2]
Pretty sure it's C) condensation because all of the others required heat to be added