A is the answe for the final temperatures
Radiation that comes from the sun is being beemed at earth atmosphere
<span>s=2.7 centimeters = 0.027 meters
t=3.9 milliseconds = 0.0039 seconds
s=(1/2)a*t^2
so
a=(2.7*2)/(0.0039)^2
= 355,029.58 m/s^2
a=355,029.58 m/s^2 = 355.02958 km / s^2</span>
The initial force between the two charges is given by:

where k is the Coulomb's constant, q1 and q2 the two charges, d their separation. Let's analyze now the other situations:
1. F
In this case, q1 is halved, q2 is doubled, but the distance between the charges remains d.
So, we have:

So, the new force is:

So the force has not changed.
2. F/4
In this case, q1 and q2 are unchanged. The distance between the charges is doubled to 2d.
So, we have:

So, the new force is:

So the force has decreased by a factor 4.
3. 6F
In this case, q1 is doubled and q2 is tripled. The distance between the charges remains d.
So, we have:

So, the new force is:

So the force has increased by a factor 6.
I can not solve the problem if I do not have the mass.