The molar mass of carbon (C) is 12.0107 u.
To determine the standard heat of reaction, ΔHrxn°, let's apply the Hess' Law.
ΔHrxn° = ∑(ν×ΔHf° of products) - ∑(ν×ΔHf° of reactants)
where
ν si the stoichiometric coefficient of the substances in the reaction
ΔHf° is the standard heat of formation
The ΔHf° for the substances are the following:
CH₃OH(l) = -238.4 kJ/mol
CH₄(g) = -74.7 kJ/mol
O₂(g) = 0 kJ/mol
ΔHrxn° = (1 mol×-74.7 kJ/mol) - ∑(1 mol×-238.4 kJ/mol)
ΔHrxn° = +163.7 kJ
Density can be defined in terms of the mass of a substance present in a certain volume.
i.e. Density = Mass/ volume
It helps classify and identify matter due to the following reasons:
1) Density is an intensive property. For a given substance the density will remain the same irrespective of the amount in which it is present.
For example: The density of Aluminum (Al) = 2.7 g/cm3. This value is a constant at a certain temperature and pressure. Therefore, the density will remain the same for 1 kilogram or 1 mg of Al
2) Different elements/compounds have different values of densities which is characteristic of that substance
Answer:48kg of SiO2, 0.5kg of Al2O3, and 1.5kg of B2O3
Will be the final product
Explanation:
I) 96wt% of SiO2 will amount to 96/100*50 = 0.96*50=48kg of SiO2
ii) 1wt% of Al2O3 will amount to 1/100*50 = 0.01*50=0.5kg of Al2O3
III) 3wt% of B2O3 will amount to 3/100*50 = 0.03*50=1.5kg of B2O3..
The overall product form 48+ 0.5+1.5= 50kg
Pressure: when the external pressure is:
less than one atmosphere, the boiling point of the liquid is lower than its normal boiling point.
equal to one atmosphere, the boiling point of a liquid is called the normal boiling point.
greater than one atmosphere, the boiling point of the liquid is greater than its normal boiling point.