Answer:ugly nlikeieieisj
Explanation:ebebbebebebes
Answer:
1.10134 * 10⁻⁹m⁻¹
Explanation:
K = 680Nm⁻¹
μ = ?
μ = (m₁ + m₂) / m₁m₂
compound = CO
C = 12.0 g/mol = 0.012kg/mol
O = 16.0g/mol = 0.016kg/mol
μ = (m₁ + m₂) / m₁m₂
μ = (0.012 + 0.016) / (0.012*0.016) = 145.83
v = 1/2πc * √(k/μ)
ν = 1/ 2*3.142* 3.0*10⁸ * √(630/145.83)
v = 5.30*10⁻¹⁰ * 2.078
v = 1.10134*10⁻⁹m⁻¹
Answer:
A drunk driver's car travel 49.13 ft further than a sober driver's car, before it hits the brakes
Explanation:
Distance covered by the car after application of brakes, until it stops can be found by using 3rd equation of motion:
2as = Vf² - Vi²
s = (Vf² - Vi²)/2a
where,
Vf = Final Velocity of Car = 0 mi/h
Vi = Initial Velocity of Car = 50 mi/h
a = deceleration of car
s = distance covered
Vf, Vi and a for both drivers is same as per the question. Therefore, distance covered by both car after application of brakes will also be same.
So, the difference in distance covered occurs before application of brakes during response time. Since, the car is in uniform speed before applying brakes. Therefore, following equation shall be used:
s = vt
FOR SOBER DRIVER:
v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s
t = 0.33 s
s = s₁
Therefore,
s₁ = (73.33 ft/s)(0.33 s)
s₁ = 24.2 ft
FOR DRUNK DRIVER:
v = (50 mi/h)(1 h/ 3600 s)(5280 ft/mi) = 73.33 ft/s
t = 1 s
s = s₂
Therefore,
s₂ = (73.33 ft/s)(1 s)
s₂ = 73.33 ft
Now, the distance traveled by drunk driver's car further than sober driver's car is given by:
ΔS = s₂ - s₁
ΔS = 73.33 ft - 24.2 ft
<u>ΔS = 49.13 ft</u>
I think it would be d because development in nations needs more population
Explanation:
Types of light microscope
1. Compound , and 2. Stereo Microscope
Compound microscope has two lens system also called compound lens system. The objective lens and the eyepiece lens. The magnification provided by the objective lens is compounded by the eyepiece lens, the a higher magnification is observed.