1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
3 years ago
9

A object of mass 33 is dropped from a height of 85 meters. Calculate the average power developed by the object in falling throug

h this distance.
Take g as 9.81 m/s^2

give the answer in watts to three significant figures
Physics
1 answer:
DochEvi [55]3 years ago
3 0
Power  =  Work done  /  Time taken.

Work done =  mgh
Mass, m = 33kg    ( Am presuming it is 33 kg).
h =  85 m.
Work done =  33 * 9.81* 85 =  27517.05  J.

Time taken.
Since object was dropped from height, it fell under gravity.
Using    H =  ut  +  (1/2) * gt^2.              u = 0.
               H =  1/2 gt^2.
               t  =   (2H/g) ^ (1/2)
               t  =  (2*85/9.81) ^ 0.5 =  4.1628 s.

Power  =    27517.05 / 4.1628 = 6610.23 Watts.
             =  6610 W  to  3 S. f.

You might be interested in
A stone is dropped into a river from a bridge 41.7 m above the water. Another stone is thrown vertically down 1.80 s after the f
hram777 [196]

Answer:

31.75 m/s

Explanation:

h = 41.7 m

Let the initial velocity of the second stone is u

Let the time taken to reach to the bottom by the first stone is t then the time taken by the second stone to reach the ground is t - 1.8.

For first stone:

Use second equation of motion

h=ut+\frac{1}{2}gt^2

Here, u = 0, g = 9.8 m/s^2 and t be the time and h = 41.7

So, 41.7= 0 + 0.5 x 9.8 x t^2

41.7 = 4.9 t^2

t = 2.92 s ..... (1)

For second stone:

Use second equation of motion

h=ut+\frac{1}{2}gt^2

Here, g = 9.8 m/s^2 and time taken is t - 1.8 = 2.92 - 1.8 = 1.12 s, h = 41.7 m and u be the initial velocity

h=u\left ( t-1.8 \right )+4.9\left ( t-1.8 \right )^2    .... (2)

By equation the equation (1) and (2), we get

41.7=1.12 u +4.9 \times 1.12^{2}

u = 31.75 m/s

5 0
3 years ago
A sinusoidal wave has period 0.20 s and wavelength 2.0 m. What is the wave speed?
il63 [147K]

Answer:10m/s

Explanation:

Wave speed ,v=for

Where π= wavelength=2m

Period =1/f f=frequency of wave

F=1/period

=1/0.2=5Hz

So speed of waves,v=5×2=10m/s

5 0
3 years ago
A Chef is looking for a new frying pan that will allow her to cook food quickly at temperatures above 500°C. Use the data provid
makvit [3.9K]

Answer:

Explanation:

1st one

What is your evidence?

Very heavy professional or restaurant pans will have iron handles, while those for home use will be made of brass or stainless steel. All are perfectly safe for oven use.

6 0
2 years ago
Hahah I look pregnant don’t I
n200080 [17]
I see a pillow

But you see...this bobcat
Cute ain’t it?

8 0
3 years ago
Please help me with this question​
vovangra [49]

Answer:

1. 12 V

2a. R₁ = 4 Ω

2b. V₁ = 4 V

3a. A = 1.5 A

3b. R₂ = 4 Ω

4. Diagram is not complete

Explanation:

1. Determination of V

Current (I) = 2 A

Resistor (R) = 6 Ω

Voltage (V) =?

V = IR

V = 2 × 6

V = 12 V

2. We'll begin by calculating the equivalent resistance. This can be obtained as follow:

Voltage (V) = 12 V

Current (I) = 1 A

Equivalent resistance (R) =?

V = IR

12 = 1 × R

R = 12 Ω

a. Determination of R₁

Equivalent resistance (R) = 12 Ω

Resistor 2 (R₂) = 8 Ω

Resistor 1 (R₁) =?

R = R₁ + R₂ (series arrangement)

12 = R₁ + 8

Collect like terms

12 – 8 =

4 = R₁

R₁ = 4 Ω

b. Determination of V₁

Current (I) = 1 A

Resistor 1 (R₁) = 4 Ω

Voltage 1 (V₁) =?

V₁ = IR₁

V₁ = 1 × 4

V₁ = 4 V

3a. Determination of the current.

Since the connections are in series arrangement, the same current will flow through each resistor. Thus, the ammeter reading can be obtained as follow:

Resistor 1 (R₁) = 4 Ω

Voltage 1 (V₁) = 6 V

Current (I) =?

V₁ = IR₁

6 = 4 × I

Divide both side by 4

I = 6 / 4

I = 1.5 A

Thus, the ammeter (A) reading is 1.5 A

b. Determination of R₂

We'll begin by calculating the voltage cross R₂. This can be obtained as follow:

Total voltage (V) = 12 V

Voltage 1 (V₁) = 6 V

Voltage 2 (V₂) =?

V = V₁ + V₂ (series arrangement)

12 = 6 + V₂

Collect like terms

12 – 6 = V₂

6 = V₂

V₂ = 6 V

Finally, we shall determine R₂. This can be obtained as follow:

Voltage 2 (V₂) = 6 V

Current (I) = 1.5 A

Resistor 2 (R₂) =?

V₂ = IR₂

6 = 1.5 × R₂

Divide both side by 1.5

R₂ = 6 / 1.5

R₂ = 4 Ω

4. The diagram is not complete

7 0
3 years ago
Other questions:
  • A car, traveling at , encounters a dip in the road. The radius of curvature at the bottom of the dip is . Each of the car’s four
    11·1 answer
  • The gauge pressure in your car tires is 2.50×10^5N/m22.50×10^5⁢N/m^2 at a temperature of 35.0ºC when you drive it onto a ferry b
    9·1 answer
  • How far will a runner travel at an average speed of 5m/s for 20 minutes?
    11·1 answer
  • A small 22 kilogram canoe is floating downriver at a speed of 5 m/s. What's the canoes kinetic energy? _______ Joules
    12·2 answers
  • After the driver first notices the obstacle, the car moves uniformly for a time interval t1−t0=t before the brakes are applied.
    12·1 answer
  • Seven little spheres of mercury, each with a diameter of 2 mm. When they coalesce to form a single sphere, how big will it be (i
    11·1 answer
  • Zoning laws establish _______.
    14·1 answer
  • Pleaseeeeeee, help me, I need youuuu!!!!!!
    13·1 answer
  • ojzsouchwHSUHOUDSUWHUWHUHFUWIHUIHSUIHVUISHVIUSHIUHVHIUHSIUHSHVISSVUUHUVHUHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
    11·2 answers
  • I’m not sure what this is… help please
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!