Answer:
4.7m
Explanation:
Given parameters:
Mass of the book = 1kg
Gravitational potential energy = 46J
Unknown:
Height of the shelf = ?
Solution:
The potential energy is due to the position of a body above the ground.
Gravitational potential energy = mgh
m is the mass,
g is the acceleration due gravity = 9.8m/s²
h is the height which is unknown
46 = 1 x 9.8 x h
h = 4.7m
According to the physical fact that a<span>mplitude and energy have proportional values, this statement is definitely FALSE. Pay attention on the words ''</span><span> inversely related'', that will be the main point which will make it absolutely clear. Hope you will find this answer helpful! Regards.</span>
Answer:
Without any external forces a moving object will continue to move in a straight line. The gravitational force between the two objects will provide the centripetal force to keep the objects moving around one another.
1. satellite in orbit around the earth (motion of earth is negligible)
2. moon in orbit around the earth (center of motion several thousand miles
from center of earth)
3. earth in orbit around sun (center of rotation close to center of sun)
4. binary stars (if masses of stars are equal center of rotation is in middle)
Answer:
The wavelength is 3500 nm.
Explanation:
d= 
n= 1
θ= 30°
λ= unknown
Solution:
d sinθ = nλ
λ = 
λ = 3500 nm
Answer:
i) 21 cm
ii) At infinity behind the lens.
iii) A virtual, upright, enlarged image behind the object
Explanation:
First identify,
object distance (u) = 42 cm (distance between object and lens, 50 cm - 8 cm)
image distance (v) = 42 cm (distance between image and lens, 92 cm - 50 cm)
The lens formula,

Then applying the new Cartesian sign convention to it,

Where f is (-), u is (+) and v is (-) in all 3 cases. (If not values with signs have to considered, this method that need will not arise)
Substituting values you get,
i) 
f = 21 cm
ii) u =21 cm, f = 21 cm v = ?
Substituting in same equation
v ⇒ ∞ and image will form behind the lens
iii) Now the object will be within the focal length of the lens. So like in the attachment, a virtual, upright, enlarged image behind the object.