Answer:
Explanation:
Given:
dI/dt = 6.21 A/s
n = N/l
= 100 turns/cm
= 100 turns/cm × 100 cm/1 m
Radius, r = 14.7 cm
= 0.147 m
Inductance, L = uo × n^2 × A × l
L/l = 4pi × 10^-7 × (100 × 100)^2 × pi × 0.147^2
= 8.53 H
Emf, E = L × dI/dt
E/l = L/l × dI/dt
= 8.53 × 6.21
= 52.98 V/m
=
Answer:
the body has linear acceleration, but cannot rotate
Explanation:
Let's analyze the system
If the torque is zero, the two forces are the same magnitude, but applied to each side of the body in such a way that the torque cancels the punch of the other. Therefore the body cannot turn
The two forces go in the same direction so the object can have linear acceleration
The object is at rest because it has a force in the same direction, but in the opposite direction.
therefore the correct answer is:
the body has linear acceleration, but cannot rotate
How fast a car goes is known as its speed.
Speed = (distance covered) divided by (time to cover the distance)
It has nothing to do with the direction the car is going.
______________________________________
The car's velocity is its speed AND the direction it's going.
30 miles per hour . . . speed
40 miles per hour north . . . velocity
20 miles per hour south
20 miles per hour west . . . . . same speed, different velocity
-- 'Velocity' is NOT a big word that you use when you mean
'speed' but you want to sound smarter. It's a different thing.
-- If you don't know anything about the direction the car is going,
then you can't say anything about its velocity.
-- If the car is going around a curve, then its velocity is constantly
changing, even if its speed is constant.
An ignious rock's color is mainly determined by its silica content