Needed to be pointed out that mechanical advantage is when the distance traveled is traded for force applied
from the following options, the one that is considered a mechanical advantage is : C. a longer lever helps lift more weight
hope this helps
Answer:
0.12
Explanation:
The acceleration due to gravity of a planet with mass M and radius R is given as:
g = (G*M) / R²
Where G is gravitational constant.
The mass of the planet M = 3 times the mass of earth = 3 * 5.972 * 10^24 kg
The radius of the planet R = 5 times the radius of earth = 5 * 6.371 * 10^6 m
Therefore:
g(planet) = (6.67 * 10^(-11) * 3 * 5.972 * 10^24) / (5 * 6.371 * 10^6)²
g(planet) = 1.18 m/s²
Therefore ratio of acceleration due to gravity on the surface of the planet, g(planet) to acceleration due to gravity on the surface of the planet, g(earth) is:
g(planet)/g(earth) = 1.18/9.8 = 0.12
Answer:
For the dry and static friction materials, some of these are Rubber, Aluminum, Gold, Platinum,
Explanation:
High friction materials has higher coefficient of friction (COF).
Answer:
It decreases.
Explanation:
between the two interacting objects, more separation distance will result in weaker gravitational forces. So as two objects are separated from each other, the force of gravitational attraction between them also decreases
<span>two filters with vertical polarization</span>