The magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.
The given parameters;
- <em>initial temperature of metals, = </em>
<em /> - <em>initial temperature of water, = </em>
<em> </em> - <em>specific heat capacity of copper, </em>
<em> = 0.385 J/g.K</em> - <em>specific heat capacity of aluminum, </em>
= 0.9 J/g.K - <em>both metals have equal mass = m</em>
The quantity of heat transferred by each metal is calculated as follows;
Q = mcΔt
<em>For</em><em> copper metal</em><em>, the quantity of heat transferred is calculated as</em>;

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>copper metal</em>;

<em>For </em><em>aluminum metal</em><em>, the quantity of heat transferred is calculated as</em>;

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>aluminum metal </em><em>;</em>

Thus, we can conclude that the magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.
Learn more here:brainly.com/question/15345295
The equivalent of the Newton's second law for rotational motions is:

where

is the net torque acting on the object

is its moment of inertia

is the angular acceleration of the object.
Re-arranging the formula, we get

and since we know the net torque acting on the (vase+potter's wheel) system,

, and its angular acceleration,

, we can calculate the moment of inertia of the system:
Answer:
The minimum no. of turns is 
Explanation:
Given:
Magnetic field
T
Frequency
Hz
Area of turn

Voltage
V
From the formula of induced emf,

Where
and 
So number of turn is,



Therefore, the minimum no. of turns is 
Explanation:
There are still some questions beyond the Standard Model of physics, such as the strong CP problem, neutrino mass, matter–antimatter asymmetry, and the nature of dark matter and dark energy.