Answer:
t = 12.82s
Explanation:
F = m×a
= (70)×(2)
= 140 N
during the acceleration, the sprinter cover d = 29 m with time:
d = 1/2×at
29 = 1/2×(2)×t^2
t^2 = 29s
t = 5.39s
and attains the velocity of:
v = a×t
= 2×5.39
= 10.77 m/s
Then,to cover the last x = 80 m with a speed of 10.77 m/s in time:
t = x/v
= 80/10.77
= 7.43s
Therefore, it will take the sprinter 7.43 + 5.39 = 12.82s
Answer:
Hi Emily, I know you from school.
Explanation:
You're in my class. 2024 am i right
I would say that this passage is an example of the heliocentric correct view of the world with the sun and not the earth the center of our universe and this formed a very important part of the Renaissance wherein nature was examined first hand wherever possible to arrive at a much closer approximation of the truth than in Medieval or Classical times of Aristotle when idle speculation about nature was the order of the day.
You can compare the velocity of the car, 60 mph, with the velocity that a mass would acquire when falls from certain height.
First, convert 60 mph to m/s:
60 miles/h * 1.60 km/mile * 1000 m/km * 1h/3600s = 26.67 m/s
Second, calculate from what height a body in free fall reachs 26.67 m/s velocity when hits the floor.
free fall => Vf^2 = 2g*H => H = Vf^2 / (2g)
H = (26.67m/s)^2 / (2*9.8 m/s) = 36.2 m
If you consider that the height between the floors of a building is approximately 3.6 m, you get 36.2 m / 3.6 m/floor = 10 floors.
Then, you conclude that the force of impact is the same as driving you vehicle off a 10 story building.
<span>C. Field lines begin near the magnet’s north pole and extend toward its south pole.
Hope this helps!</span>