Answer: Albert Einstein
Explanation:
Light can be considered as a wave or as particles, in this context Einstein proposed that light behaves like a stream of particles called <u>photons</u> with an energy, in order to correctly explain the photoelectric effect (in fact he won the 1921 Nobel Prize in Physics because of this explanation).
To uderstand it better:
The photoelectric effect is a fenomenom that consists in the emission of electrons that occurs when light falls on a metal surface under certain conditions.
This can only be explained based on the corpuscular model of light, that is, light is quantized.
So, Einstein theorized light as a stream of energy packets called photons, this energy is able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a kinetic energy.
Answer:
The box 1 moves faster.
Explanation:
lets
Mass =m kg
Initial velocity = u m/s
Initial velocity of box = 0 m/s
Let stake mass of block = m
When ball bounces back:
The final speed of the box = v
Final speed of ball = - u
Pi = Pf ( From linear momentum conservation)
m x u + m x 0 = m ( - u) + m v
mu + mu = m v
v= 2 u
When ball get stuck :
The final speed of ball and box = v
Pi = Pf ( From linear momentum conservation)
m x u + m x 0 = (m+m) v
v= u /2
So the box 1 moves faster.
Answer:2 x 10^-5K^-1
Explanation:
The solution is in the attached file
Answer: False
Explanation: The sun is one of earths primary energy sources. Without the sun, all animals, plants, humans would die. The sun's energy provides warmth for humans and plants and animals cannot grow without the sun.
Answer:
A. 6.36 lbm/s
b. 
Explanation:
a. Given the following information;
#Compressor inlet:
Air pressure,
#Compressor outlet:

#Cooling rate,

# From table A-1E
Gas constant of air 
Specific enthalpy at 
Using the mass balance:

Hence, the mass flow rate of the air is 6.36lbm/s
b The specific enthalpy at the exit is defined as the energy balance on the system:

Hence, the temperature at the compressor exit 