Answer:
density=6.74g/ml
:320g÷47.5ml
d=6.74g/ml
thank you
<em><u>I </u></em><em><u>hope</u></em><em><u> </u></em><em><u>this </u></em><em><u>is </u></em><em><u>helpful</u></em>
The answer will be 8.
Edit:
Sorry! I was wrong earlier.
An octet is when there is 8 electrons in the valence shell.
I hope this helped, and please mark brainliest! :)
They each have one valence electron in their outer shell, but they are also on the same row (period). If you follow this pattern, potassium will also have one valence electron.
Hope this helps!! :)
Answer:
C.
will precipitate out first
the percentage of
remaining = 12.86%
Explanation:
Given that:
A solution contains:
![[Ca^{2+}] = 0.0440 \ M](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D%200.0440%20%5C%20M)
![[Ag^+] = 0.0940 \ M](https://tex.z-dn.net/?f=%5BAg%5E%2B%5D%20%3D%200.0940%20%5C%20M)
From the list of options , Let find the dissociation of 

where;
Solubility product constant Ksp of
is 
Thus;
![Ksp = [Ag^+]^3[PO_4^{3-}]](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BAg%5E%2B%5D%5E3%5BPO_4%5E%7B3-%7D%5D)
replacing the known values in order to determine the unknown ; we have :
![8.89 \times 10 ^{-17} = (0.0940)^3[PO_4^{3-}]](https://tex.z-dn.net/?f=8.89%20%5Ctimes%2010%20%5E%7B-17%7D%20%20%3D%20%280.0940%29%5E3%5BPO_4%5E%7B3-%7D%5D)
![\dfrac{8.89 \times 10 ^{-17}}{(0.0940)^3} = [PO_4^{3-}]](https://tex.z-dn.net/?f=%5Cdfrac%7B8.89%20%5Ctimes%2010%20%5E%7B-17%7D%7D%7B%280.0940%29%5E3%7D%20%20%3D%20%5BPO_4%5E%7B3-%7D%5D)
![[PO_4^{3-}] =\dfrac{8.89 \times 10 ^{-17}}{(0.0940)^3}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D%5Cdfrac%7B8.89%20%5Ctimes%2010%20%5E%7B-17%7D%7D%7B%280.0940%29%5E3%7D)
![[PO_4^{3-}] =1.07 \times 10^{-13}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D1.07%20%5Ctimes%2010%5E%7B-13%7D)
The dissociation of 
The solubility product constant of
is 
The dissociation of
is :

Thus;
![Ksp = [Ca^{2+}]^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![2.07 \times 10^{-33} = (0.0440)^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=2.07%20%5Ctimes%2010%5E%7B-33%7D%20%3D%20%280.0440%29%5E3%20%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![\dfrac{2.07 \times 10^{-33} }{(0.0440)^3}= [PO_4^{3-}]^2](https://tex.z-dn.net/?f=%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%280.0440%29%5E3%7D%3D%20%20%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![[PO_4^{3-}]^2 = \dfrac{2.07 \times 10^{-33} }{(0.0440)^3}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%5E2%20%3D%20%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%280.0440%29%5E3%7D)
![[PO_4^{3-}]^2 = 2.43 \times 10^{-29}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%5E2%20%3D%202.43%20%5Ctimes%2010%5E%7B-29%7D)
![[PO_4^{3-}] = \sqrt{2.43 \times 10^{-29}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D%20%5Csqrt%7B2.43%20%5Ctimes%2010%5E%7B-29%7D)
![[PO_4^{3-}] =4.93 \times 10^{-15}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D4.93%20%5Ctimes%2010%5E%7B-15%7D)
Thus; the phosphate anion needed for precipitation is smaller i.e
in
than in

Therefore:
will precipitate out first
To determine the concentration of
when the second cation starts to precipitate ; we have :
![Ksp = [Ca^{2+}]^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![2.07 \times 10^{-33} = [Ca^{2+}]^3 (1.07 \times 10^{-13})^2](https://tex.z-dn.net/?f=2.07%20%5Ctimes%2010%5E%7B-33%7D%20%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%281.07%20%5Ctimes%2010%5E%7B-13%7D%29%5E2)
![[Ca^{2+}]^3 = \dfrac{2.07 \times 10^{-33} }{(1.07 \times 10^{-13})^2}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5E3%20%3D%20%20%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%281.07%20%5Ctimes%2010%5E%7B-13%7D%29%5E2%7D)
![[Ca^{2+}]^3 =1.808 \times 10^{-7}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5E3%20%3D1.808%20%5Ctimes%2010%5E%7B-7%7D)
![[Ca^{2+}] =\sqrt[3]{1.808 \times 10^{-7}}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D%5Csqrt%5B3%5D%7B1.808%20%5Ctimes%2010%5E%7B-7%7D%7D)
![[Ca^{2+}] =0.00566](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D0.00566)
This implies that when the second cation starts to precipitate ; the concentration of
in the solution is 0.00566
Therefore;
the percentage of
remaining = concentration remaining/initial concentration × 100%
the percentage of
remaining = 0.00566/0.0440 × 100%
the percentage of
remaining = 0.1286 × 100%
the percentage of
remaining = 12.86%
A lot of cesium is how much cesium you would get and stuff