Answer:
120 g of NaCl in 300 g H20 at 90 C
Explanation:
At x = 90 go vertical to the line for NaCl...then go left to the y-axis to find the solubility in 100 g H20 = 40
we want 300 g H20 so multiply this by 3 to get 120 gm of NaCl in 300 g
Answer:
I'm thinking cooper but not sure
Answer:
HCl(aq) + KOH(aq) --> KCl(aq) + H2O(l)
Explanation:
A neutralization reaction is the process between an acid and a base (there are a number of different ways to define acids and bases). An acid is a compound, which dissolves in water by releasing H+ ions, and a base is a compound, which dissolves in water by releasing OH- ions (by Arrhenius' definition, the simplest one). In this case, the neutralization reaction is the process between HCl (hydrochloric acid) - an acid, and KOH (potassium hydroxide) - a base.
Answer:
The answer is
<h2>0.052 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 2.5 g
volume = 48 cm³
The density is

We have the final answer as
<h3>0.052 g/cm³</h3>
Hope this helps you
The volume of SO2 produced at 325k is calculated as below
calculate the moles of SO2 produced which is calculated as follows
write the reacting equation
K2SO3 +2 HCl = 2KCl +H2O+ SO2
find the moles of HCl used
=mass/molar mass = 15g/ 36.5 g/mol =0.411 moles
by use of mole ratio between HCl to SO2 which is 2:1 the moles of SO2 is therefore = 0.411 /2 =0.206 moles of SO2
use the idea gas equation to calculate the volume SO2
that is V=nRT/P
where n=0.206 moles
R(gas constant) = 0.082 L.atm/ mol.k
T=325 K
P=1.35 atm
V=(0.206 moles x 0.082 L.atm/mol.k x325 k)/1.35 atm = 4.07 L of SO2