From the balanced equation:
<span>1mol C3H8 requires 5mol O2 for combustion </span>
<span>Molar mass C3H8 = 44g/mol </span>
<span>8.8g C3H8 = 8.8/44 = 0.2mol C3H8 </span>
<span>This will require 5*0.2 = 1.0mol O2 </span>
<span>Molar mass O2 = 32g/mol </span>
<span>Therefore 32g of O2 required.
</span>
Yes. When two things are directly prortional, that means that as one increases, the other increases at the same rate. So, say you have a 2kg object at an acceleration of 2m/s^2. The force would be 4N. If you have a 3kg object at an acceleration of 2m/s^2, the force would be 6N. If two things are inversely proportional, that means that as one thing increases the other decreases at the same rate. A good example of this is in a chemical reaction. If you increase the surface area of the reactants, the reaction time decreases. They are inversely proportional.
Answer:
At equilibrium, the concentration of
is going to be 0.30M
Explanation:
We first need the reaction.
With the information given we can assume that is:
+
⇄ 2
If there is placed 0.600 moles of NO in a 1.0-L vessel, we have a initial concentration of 0.60 M NO; and no
nor
present. Immediately,
and
are going to be produced until equilibrium is reached.
By the ICE (initial, change, equilibrium) analysis:
I: [
]=0 ; [
]= 0 ; [
]=0.60M
C: [
]=+x ; [
]= +x ; [
]=-2x
E: [
]=0+x ; [
]= 0+x ; [
]=0.60-2x
Now we can use the constant information:
![K_{c}=\frac{[products]^{stoichiometric coefficient} }{[reactants]^{stoichiometric coefficient} }](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5Bproducts%5D%5E%7Bstoichiometric%20coefficient%7D%20%7D%7B%5Breactants%5D%5E%7Bstoichiometric%20coefficient%7D%20%7D)
= 
= 
= 




At equilibrium, the concentration of
is going to be 0.30M
I believe the correct answer is B
Answer:
All bonds are equivalent in length and strength within the molecule.
Gaseous SO3 is a trigonal planar molecule that exhibit a D3h symmetry group.
Sulfur has sp2 hybridization and it has 6 outer electrons which make the bonds with the oxygen.
Its constituent sulfur atom has an oxidation state of +6 and a formal charge of 0.
The Lewis structure is made up of one S=O double bond and two S–O dative bonds that doesn't not engage the d-orbitals. ( Thus, SO3 molecule has three double bonded oxygen to the central sulfur atom). This explains the strength.
It gaseous form had a zero electrical dipole moment because of the 120° angle between the S-O bonds.
Explanation: