The normal stress follows the formula written below:
σ = F/A
There are two types of stress, axial and tangential. Since we are only given with the dimension of the radius (and not the length), the possible stress is axial. So, the area is,
A = πr² = π(0.75 in)² = 1.767 in²
So,
σ = F/A = 500 lb/1.767 in² = <em>282.94 psi</em>
<span>LOCATION Z, because it is only 2 away from the coast.
The rest are farther inland
hope this helps</span>
Hey
So first we need to know what the direction of the force is, using your right hand rule point your right hand in the direction of the velocity. You're saying its the z direction, not telling me whether it's into the page or out? Since its a positive z im assuming its coming out. The magnetic field is pushing it upwards, so the force is going in the negative x direction.
The force of a magnetic field is
F = Qv X B
What's weird is that you don't need mass in this equation. Actually you don't even need the formula, its telling you that they're all going in perpendicar directions. the answer is 90 degrees.
Now if you want to know the F just multiply the charge, velocity and magnetic field .
F = GVB
F = 6.048 E -15
Answer : 90 degrees, sin(90) = 1
No. it is not good for people to live on Mars.
Answer:
One end of any bar magnet will always want to point north if it is freely suspended. This is called the north-seeking pole of the magnet, or simply the north pole. The opposite end is called the south pole.
Explanation: