Answer:
Explanation:
101 dB = 10.1 B.
Maximum intensity of sound allowed = 10.1 B
Intensity of sound in terms of W/m² can be found as follows
log (I / I₀) = 10.1
I / I₀ = 10¹⁰°¹
I = I₀ X 10¹⁰°¹
= 10⁻¹² X 10¹⁰°¹
= 10⁻¹°⁹ W/m²
105 m above the ground the this intensity will be 105² times
intensity at source point = 10⁻¹°⁹ x 105²
= 138.79 W/m²
energy of sound from source
= 4π times
= 4 x 3.14 x 138.79
= 1743.28W/m²
To calculate in terms of decibel :
log 1743.28 / 10⁻¹²
= log 1743.28 +12
= 15.24 B
= 152.4 dB .
152.4 dB .
Since
Electric potential energy = qV
Where V = Ed
Hence
Electric potential energy = q(Ed) --- (1)
Since E = 1.0 * 10^3 N/C
d = 0.10 m
q = 4 * 10^-6 C
Plug in the values in (1)
(1) => Electric potential energy = 4 * 10^-6(1.0 * 10^3 * 0.10)
Electric potential energy = 400 μJ
acceleration = change in velocity /change in time
convert 40km to meter then divide it with 5
Answer:
A and c, hope i helped xx
Explanation:
Answer:
<h3>The answer is option B</h3>
Explanation:
The frequency of a wave can be found by using the formula

where
c is the velocity
From the question
wavelength = 0.39 m
c = 86 m/s
We have

We have the final answer as
<h3>200 Hz</h3>
Hope this helps you