-A photon travels, on average, a particular distance, d, before being briefly absorbed and released by an atom, which scatters it in a new random direction.
-Given d and the speed of light, c, you can figure out the average time step and space step size (how often the photon “steps” and how far it “steps” each time).
-The size of the Sun is figured in terms of step size. Some surprisingly tricky math happens, involving “Brownian motion” and probabilities. Finally,
-The average time it would take to get to the surface of the Sun is found.
Answer:
The person is on the Moon having a weight of 500 N. The acceleration of gravity on the Moon is approximately 1.6 m/s2. What is your his, which includes his space suit?
f= Force (of gravity)=500N
g=acceleration of gravity=1.6m/s^2
m=mass=312kg
m=f/a= 500N/1.6 m/s^2 = 500 (kg-m/1.6m/s^2) = 500/1.6kg = 312kg
his mass is 312kg
Its speed reading would increase to 10 m/s every second
Answer:
1) not so long (maybe an hour or two)
2) access to information through the internet will be most affected if my computer and mobile phone run out of battery power.
3) yes, one should prepare for power outage. This can be done by having a standby alternative source of power like the use of inverters that stores electrical energy in form of chemical energy, and small internal combustion engine powered electric generators.
4) solar panels can be used to draw power from incident sun rays, this power can be stored in an inverter for future use in case of a power outage.
5) energy from the sun is converted into direct current which is then supplied to an accumulator in the opposite direction to its flow of current. When the energy is needed, it can be used directly, or converted to an alternating current. This is achieved by connecting its terminal to the supply. Electric field is generated by flow of ions and electrons within the working chemical (e.g lithium).
Explanation: