Answer: If the force stays the same, the acceleration would decrease
Answer:
T = 540 N (to two significant digits)
Explanation:
Let the crate dimension L be from strap attachment to floor contact
Let T be the strap tension
sum moments about the floor contact point to zero
mg[½Lcos25] - Tsin61[Lcos25] + Tcos61[Lsin25] = 0
L is common to all terms, so divides out.
½(71)(9.8)cos25 = T(sin61cos25 - cos61sin25)
T = (71)(9.8)cos25 / (2(sin61cos25 - cos61sin25))
T = 536.428020...
Answer:
786.6 N
Explanation:
mass of car, m = 912 kg
initial velocity of car, u = 31.5 m/s
final velocity of car, v = 24.6 m/ s
time, t = 8 s
Let a be the acceleration of the car
Use first equation of motion
v = u + a t
24.6 = 31.5 + a x 8
a = - 0.8625 m/s^2
Force, F = mass x acceleration
F = 912 x 0.8625
F = 786.6 N
Thus, the force on the car is 786.6 N.
For a 50 kg person receives an absorbed dose of gamma radiation of 20 millirads, the total energy absorbed is mathematically given as
E=0.1457J
<h3>What is the total energy absorbed?</h3>
Generally, the equation for the total energy absorbed is mathematically given as
E=mass*gamma radiation
Therefore
E=50*20*19^{-3}
E=0.1457J
In conclusion, the total energy absorbed
E=0.1457J
Read more about Energy
brainly.com/question/13439286