Answer:
93.125 × 10^(19)
Explanation:
We are told the asteroid has acquired a net negative charge of 149 C.
Thus;
Q = -149 C
charge on electron has a value of:
e = -1.6 × 10^(-19) C
Now, for us to determine the excess electrons on the asteroid, we will just divide the net charge in excess on the asteroid by the charge of a single electron.
Thus;
n = Q/e
n = -149/(-1.6 × 10^(-19))
n = 93.125 × 10^(19)
Thus, it has 93.125 × 10^(19) more electrons than protons
Answer:
I = 27.65A < 40.59°
PowerFactor = 0.76
Explanation:
Current on the heating load is:
I1 = 30KW / 4KV = 7.5A < 0°
Current on the inductive load:
I2 = (150KVA*0.6) /4KV = 22.5A with an angle of acos(0.6)=53.1°
The sum of both currents is:
It = I1 + I2 = 7.5<0° + 22.5<53.1° = 27.65<40.59°
Now, the power factor will be:
pf = cos (40.59°) = 0.76
Answer:
The expresion for the flux through the disk is:
Ф = E·πR^2·cos(Θ).
Explanation:
Let's sat the electric field has direction e and the normal to the disk has direction n (bold means vector quantities). So we have:
E=E·e (where E is the magnitud of the electric flied)
A=A·n
The flux for an uniform electric field and a flat surface is:
Ф=E×A
⇒ Ф = E·A·e×n = E·A·cos(angle(e,n)) = E·A·cos(Θ)
Since in this case the area is for a disk of radius R, 
So, Ф = E·πR^2·cos(Θ)
Answer: amplitude
Explanation: This describes the maximum amount of the displacement of a particle from it rest position. Usually, it is measured in metres
Since we are considering AM which is amplitude modulation, a technique used in electronic communication, most commonly for broadcasting information through a radio carrier wave. In amplitude modulation, the amplitude (signal strength) of the carrier wave is diversified in proportion to that of the message signal being broadcasted.