2.57 joule energy lose in the bounce
.
<u>Explanation</u>:
when ball is the height of 1.37 m from the ground it has some gravitational potential energy with respect to hits the ground
Formula for gravitational potential energy given by
Potential Energy = mgh
Where
,
m = mass
g = acceleration due to gravity
h = height
Potential energy when ball hits the ground
m= 0.375 kg
h = 1.37 m
g = 9.8 m/s²

Potential Energy = 5.03 joule
Potential energy when ball bounces up again
h= 0.67 m

Potential Energy = 2.46 joule
Energy loss = 5.03 - 2.46 = 2.57 joule
2.57 joule energy lose in the bounce
The answer is
C. periodic fluctuations in the intensity if sound waves.
the answer in my opinion would be A
Answer:
KE=800,000
Explanation:
The formula for kinetic energy is KE=1/2mv^2 or Kinetic Energy= 0.5*mass*velocity^2
so 1000 is the mass and 40 is the velocity
KE=0.5*1000*40^2
KE=0.5*1,000*1,600
KE=800,000 Joules
Answer:
(a): a = 0.4m/s²
(b): α = 8 radians/s²
Explanation:
First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):
a= (Vf-Vi)/t = (2m/s)/t
a: linear acceleration.
Vf: speed at the end of the ramp.
Vi: speed at the beginning of the ramp (zero).
d= (1/2)×a×t² = 5m
d: distance of the ramp (5m).
We replace the first equation in the second to determine the travel time on the ramp:
d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s
And the linear acceleration will be:
a = (2m/s)/5s = 0.4m/s²
Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:
perimeter = π×diameter = π×0.1m = 0.3142m
To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:
α = (0.4m/s²)/(0.05m) = 8 radians/s²
α: angular aceleration.