Beat frequency, fb = |f2-f1|
That is, beat frequency is the absolute difference between two frequencies. Is is as a results of destructive and constructive inferences.
Therefore, in this case:
fb = 203 - 199 = 4 Hz
Answer:
F = 520 N
Explanation:
For this exercise the rotational equilibrium equation should be used
Σ τ = 0
Let's set a reference system with the origin at the back of the refrigerator and the counterclockwise rotation as positive. On the x-axis it is horizontal directed outward, eg the horizontal y-axis directed to the side and the z-axis vertical
Torque is
τ = F x r
the bold indicate vectors, we analyze each force
the applied force is horizontal along the -x axis, the arm (perpendicular distance) is directed in the z axis,
The weight of the body is the vertical direction of the z-axis, so the arm is on the x-axis
-F z + W x = 0
F z = W x
F =
W
The exercise indicates the point of application of the force z = 1.5 m and the weight is placed in the center of mass of the body x = 0.6 m, we are assuming that the force is applied in the wide center of the refrigerator
let's calculate
F = 1300 0.6 / 1.5
F = 520 N
The sphere’s Electric potential energy is 1.6*
J
Given,
q=6. 5 µc, V=240 v,
We know that sphere’s Electric potential energy(E) = qV=6.5*
=1.6*
J
<h3>Electric potential energy</h3>
The configuration of a certain set of point charges within a given system is connected with the potential energy (measured in joules) known as electric potential energy, which is a product of conservative Coulomb forces. Two crucial factors—its inherent electric charge and its position in relation to other electrically charged objects—can determine whether an object has electric potential energy.
In systems with time-varying electric fields, the potential energy is referred to as "electric potential energy," but in systems with time-invariant electric fields, the potential energy is referred to as "electrostatic potential energy."
A tiny sphere carrying a charge of 6. 5 µc sits in an electric field, at a point where the electric potential is 240 v. what is the sphere’s potential energy?
Learn more about Electric potential energy here:
brainly.com/question/24284560
#SPJ4
Answer:
Explanation:
The answer is a priest or a moulana
For maximum radiation protection the suggested distance between array fan-beam scanner source and the operator is 2m.
The Fan beam 5 position reference system (PRS) uses accurate time-of-flight laser technology to determine vessel position relative to custom reflectors.
A fan beam allows only the measurement of the azimuth angle. A fan beam, one with a narrow beam width in azimuth and a broad beam width in elevation, can be obtained by illuminating an asymmetrical section of the paraboloid.
The operators’ desk should be positioned at least 1m away from a pencil beam, and at least 2m from a fan-beam system. Some older models, that are not now common, require a distance of 3.5 m.
To learn more about scanner here
brainly.com/question/28174696
#SPJ4