Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C
Answer:
E- The star becomes a red giant (LATEST STAGE)
F- The surface of the star becomes brighter and cooler
C- Pressure from the star's hydrogen-burning shell causes the non burning envelope to expand
A- The shell of hydrogen surrounding the star's nonburning helium core ignites.
D- The star's non burning helium core starts to contract and heat up
B- Pressure in the star's core decreases (EARLIEST STAGE)
(A star moves away from the main sequence once its core runs out of hydrogen to fuse into helium. The energy once supplied by hydrogen burning reduces and the core starts to compress under the force of gravity. This contraction allows the core and surrounding layers to heat up. Finally, the hydrogen shell around the core becomes hot enough to ignite hydrogen burning.
Answer:
INCREASES, BECAUSE ITS ANGULAR MOMENTUM IS CONSERVED.
Explanation: Interstellar cloud of Hydrogen is an accumulation of Hydrogen gas in the cloud.
As the Interstellar cloud of Hydrogen shrinks (reduces) in size,the rate of rotation of the shrinked Interstellar cloud Increases because its angular momentum is conserved. GASEOUS MOLECULES MAKE UP ABOUT 99% OF THE INTERSTELLAR CLOUD WITH HYDROGEN HAVING ABOUT 90% OF THE VOLUME OF GASES IN THE INTERSTELLAR CLOUD.
Answer:true,because velocity is directly proportional to speed or velocity
Explanation:
Velocity = frequency x wavelength
The velocity or speed varies directly with the frequency, so as the frequency is increased, the velocity or speed is also increased