Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out necessary for us remember that the first-order kinetics is given by:

Whereas the 27.5% complete means A/Ao=0.275, and thus, we solve for the rate constant as follows:

Then, we plug in the variables to obtain:

Regards!
Answer:
Br
|
Br-P-Br
|
Br
Explanation:
To calculate the valance electrons, look at the periodic table to find the valance electrons for each atom and add them together. P is in column 5A, so it has 5, Br is in column 7A, so it has 7 (multiply by 4 since there are 4 Br atoms to give 28) and there is a 1- charge, so add one more electron. 5+28+1=34, so there are 34 electrons to place. P would be the central atom, so place it in the middle. Place each Br around the P (as shown above) with a a single line connecting it. Each line represents 2 electrons, so 8 total have been place, leaving 26 remaining. Place 6 electrons around each Br (2 on each of the unbonded sides), which leaves 2 electrons remaining. The remaining pair of unbound electrons will be attached to the P between any two Br atoms. Phosphorus doesn't have to follow the octet rule, so it actually ends up with 10 valance electrons.
When you put a popcorn kernel in a microwave, the microwave heats up the water. The water then evaporates, and the air wants to escape. There will be so much pressure that the skin/shell of the kernel will break, exposing the corn.
I think Lithium, an alkali metal with three electrons, is also an exception to the octet rule. Lithium tends to lose one electron to take on the electron configuration of the nearest noble gas, helium, leaving it with two valence electrons. There are two ways in which atoms can satisfy the octet rule
Hope this helps pls mark as the brainliest answer