If the air pressure on the station model is 500 or more, place a 9 in front of this number. If the pressure number on the station is less than 500 add a 10 in front of this number.
Good luck :)
Answer:
V = 49.05 [m/s]
Explanation:
We can easily find the result using kinematics equations, first, we will find the distance traveled during the 5 seconds.

where:
Yo = initial position = 0
y = final position [m]
Vo = initial velocity = 0
t = time = 5 [s]
g = gravity aceleration = 9.81 [m/s^2]
The initial speed is zero, as the body drops without imparting an initial speed. Therefore:
y = 0 + (0*5) + (0.5*9.81*5^2)
y = 122.625[m]
Now using the following equation we can find the speed it reaches during the 5 seconds.
![v_{f} ^{2}= v_{i} ^{2}+(2*g*y)\\v_{f}=\sqrt{2*9.81*122.625} \\v_{f}=49.05 [m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%5E%7B2%7D%3D%20v_%7Bi%7D%20%5E%7B2%7D%2B%282%2Ag%2Ay%29%5C%5Cv_%7Bf%7D%3D%5Csqrt%7B2%2A9.81%2A122.625%7D%20%5C%5Cv_%7Bf%7D%3D49.05%20%5Bm%2Fs%5D)
An angle of 60 degrees with the negative y-axis could mean 60 degrees clockwise or counterclockwise, which translates to two possible angles (starting from the positive x-axis and moving counterclockwise) of 210 degrees or 330 degrees.
Then the horizontal component
of a velocity vector
with magnitude
could be one of two expressions:


A. Balloons can be filled with air.
C. Air has mass.