1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melamori03 [73]
3 years ago
10

Find the speed of a wave with wave length 650 M and a frequency 35HZ help.

Physics
2 answers:
hram777 [196]3 years ago
7 0

Answer:

option A

Explanation:

wave speed= 650×35= 22750 m/s

hope it helps !

Illusion [34]3 years ago
5 0

Answer:

option is the correct answer mark me as a brain list pls

You might be interested in
What an object is placed 8 mm from a concave spherical mirror a clear image can be projected on the screen 16 mm in front of me
alexgriva [62]

Concept: The magnification of spherical mirror can be defined by two ways.

(i) In terms of the height of the object and image.

The magnification of the spherical mirror is defined as the ratio of the height of the image'h_{i}' to the height of the object 'h_{o}'. It is denoted by letter 'm'.

Mathematically, it can be written as

m= \frac{h_{i}}{h_{o}}   ------------(1)

(ii) In terms of the object's and image's distances.

The magnification of the spherical mirror is defined as the negative ratio of the image distance'd_{i}' to the object distance 'd_{o}'.

Mathematically, it can be written as

m= - \frac{d_{i}}{d_{o}}   ------------(2)

Now, from equation (1) and (2) we have,

m = \frac{h_{i}}{h_{o}}   = -  \frac{d_{i}}{d_{o}}  -----------(3)

Given: Spherical Concave Mirror,

We will consider positive sign for object's and image's distance because both are in front of the mirror.

Object distance (d_{o}) = + 8 mm.

Image distance (d_{i}) = + 16 mm

Object's height (h_{o}) = + 4 mm

Image's height (h_{i}) =?

Now, apply equation (3)

\frac{h_{i}}{h_{o}}   = - \frac{d_{i}}{d_{o}}

Or,   \frac{h_{i}}{4 mm}   = - \frac{+16 mm}{+8 mm}

Or, hi = - 8 mm

Here; negative sign means, the image will be inverted.

The image's height will be 8 mm.

4 0
3 years ago
Two long, parallel transmission lines, 40.0cm apart, carry 25.0-A and 73.0-A currents.A). Find all locations where the net magne
In-s [12.5K]

Answer:

a) If the currents are in the same direction, the magnetic field is zero at x = 0.298 m = 29.8 cm

That is, in between the wires, 29.8 cm from the 73.0 A wire and 10.2 cm from the 25.0 A wire.

b) If the currents are in opposite directions, the magnetic field is zero at x = 0.608 m = 60.8 cm

That is, along the positive x-axis, 60.8 cm from the 73.0 A wire and 20.8 cm from the 25.0 A wire.

Explanation:

The origin is at the 73.0 A wire and the 25.0 A wire is at x = 0.40 m

The magnetic field in a current carrying wire at a distance r from the wire is given by

B = (μ₀I/2πr)

μ₀ = magnetic constant = (4π × 10⁻⁷) H/m

a) If the currents are in the same direction, at what positions is the magnetic field equal to 0.

According to laws describing the direction.of magnetic fields, this position will be at some point between the two wires.

The magnetic field due to the 73.0 A wire points out of the book, at points along the positive x-axis while the magnetic field due to the 25.0 A wire points into the plane of the book, moving in the negative x-direction.

Hence,

For the 73.0 A wire, I₁ = 73.0 A, r₁ = x

For the 25.0 A wire, I₂ = 25.0 A, r₂ = (0.4 - x)

B = B₁ - B₂ = 0

(μ₀/2π) [(I₁/r₁) - (I₂/r₂)] = 0

(I₁/r₁) = (I₂/r₂)

(I₁/x) = [I₂/(0.4-x)]

(73/x) = [25/(0.4-x)]

73(0.4-x) = 25x

29.2 - 73x = 25x

73x + 25x = 29.2

98x = 29.2

x = (29.2/98) = 0.298 m

b) If the currents are in the opposite directions, at what positions is the magnetic field equal to 0?

According to laws describing the direction.of magnetic fields, this position will be at some point beyond the second wire (since we're initially concerned about the positive x-direction).

The magnetic field due to the 73.0 A wire points out of the book, at points along the positive x-axis while the magnetic field due to the 25.0 A wire (whose direction is now in the opposite direction to the current in the first wire) is also along the positive x-direction.

Hence,

For the 73.0 A wire, I₁ = 73.0 A, r₁ = x

For the 25.0 A wire, I₂ = 25.0 A, r₂ = (x - 0.4)

B = B₁ - B₂ = 0

(μ₀/2π) [(I₁/r₁) - (I₂/r₂)] = 0

(I₁/r₁) = (I₂/r₂)

(I₁/x) = [I₂/(x-0.4)]

(73/x) = [25/(x-0.4)]

73(x-0.4) = 25x

73x - 29.2 = 25x

73x - 25x = 29.2

48x = 29.2

x = (29.2/48) = 0.608 m

Hope this Helps!!!

5 0
3 years ago
In what way has technology used aboard the International Space Station benefitted humans back on Earth?
FrozenT [24]

Answer:

Robotic arms used aboard the ISS are now used in delicate surgeries on Earth.

Explanation:

The ISS allows users to address hardware product development gaps, advanced manufacturing, and emerging technology proliferation. Microgravity-enabled material production capabilities and advanced manufacturing facilities are demonstrating scientific and commercial merit for Earth benefit

8 0
3 years ago
Read 2 more answers
A skateboarder flies horizontally off a cement planter. After 3 seconds the skateboarder lands on the ground with a final veloci
evablogger [386]

Given the time, the final velocity and the acceleration, we can calculate the initial velocity using the kinematic equation A:

v = v_o + a \Delta t

A skateboarder flies horizontally off a cement planter. After a time of 3 seconds (Δt), he lands with a final velocity (v) of −4.5 m/s. Assuming the acceleration is -9.8 m/s² (a), we can calculate the initial velocity of the skateboarder (v₀) using the kinematic equation A.

v = v_o + a \Delta t\\\\v_o = v - a \Delta t = (-4.5 m/s) - (-9.8 m/s^{2} ) \times 3 s = 24.9 m/s

Given the time, the final velocity and the acceleration, we can calculate the initial velocity using the kinematic equation A:

v = v_o + a \Delta t

Learn more: brainly.com/question/4434106

3 0
3 years ago
Write any two uses of simple machines.
Nana76 [90]
Simple machines could be used to reduce effort or extend the ability of people to perform tasks beyond their normal capabilities.
Examples include pulley, lever, and incline plane
4 0
3 years ago
Other questions:
  • Charge is placed on two conducting spheres that are very far apart and connected by a long thin wire. The radius of the smaller
    7·1 answer
  • Consider a point located equidistant from point charges A and B, labeled C in the diagram. If A and B have the same magnitude ch
    10·1 answer
  • An unknown material has a mass of 2.75 g and a volume of 4 cm3. What is the density of the material? Round to the nearest tenth.
    8·2 answers
  • CAN SOMEONE PLEASE HELP ME!!?<br> I NEED HELP PLEASE!!
    15·1 answer
  • I need this question answered about the solar system.
    10·1 answer
  • Who knows the egg drop challenge
    13·1 answer
  • Help please
    14·2 answers
  • 4. Which of the following substance will cool off the fastest?
    5·1 answer
  • Describe the conditions necessary for sublimation to occur​ please help
    6·1 answer
  • 52.13 dg = ___________ mg <br> someone please help me
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!