Wow ! This is not simple. At first, it looks like there's not enough information, because we don't know the mass of the cars. But I"m pretty sure it turns out that we don't need to know it.
At the top of the first hill, the car's potential energy is
PE = (mass) x (gravity) x (height) .
At the bottom, the car's kinetic energy is
KE = (1/2) (mass) (speed²) .
You said that the car's speed is 70 m/s at the bottom of the hill,
and you also said that 10% of the energy will be lost on the way
down. So now, here comes the big jump. Put a comment under
my answer if you don't see where I got this equation:
KE = 0.9 PE
(1/2) (mass) (70 m/s)² = (0.9) (mass) (gravity) (height)
Divide each side by (mass):
(0.5) (4900 m²/s²) = (0.9) (9.8 m/s²) (height)
(There goes the mass. As long as the whole thing is 90% efficient,
the solution will be the same for any number of cars, loaded with
any number of passengers.)
Divide each side by (0.9):
(0.5/0.9) (4900 m²/s²) = (9.8 m/s²) (height)
Divide each side by (9.8 m/s²):
Height = (5/9)(4900 m²/s²) / (9.8 m/s²)
= (5 x 4900 m²/s²) / (9 x 9.8 m/s²)
= (24,500 / 88.2) (m²/s²) / (m/s²)
= 277-7/9 meters
(about 911 feet)
I believe the correct answer from the choices listed above is option B. The function of the pulley in this situation is to change the direction of the input force. <span> The </span>pulley<span> simply turns a force in one direction into a force in another direction. Hope this answers the question. Have a nice day.</span>
Using Fleming’s left hand rule,
The magnetic force on the electron will be west. Example: If it is dropped above the equator in Africa, the electron will head towards North America.
Answer:
Explanation:
From the given information:
The initial PE
= m×g×h
= 5 kg × 9.81 m/s² × 10 m
= 490.5 J
The change in Potential energy P.E of the box is:
ΔP.E = 
ΔP.E = 0 -
ΔP.E = 
If we take a look at conservation of total energy for determining the change in the internal energy of the box;


this can be re-written as:

Here, K.E = 0
Also, 70% goes into raising the internal energy for the box;
Thus,


ΔU = 343.35 J
Thus, the magnitude of the increase is = 343.35 J