Answer:
Coefficient of
is more than 4
Explanation:
Oxidation: 
- Balance charge:
......(1)
Reduction: 
- Balance Cr:

- Balance O and H in acidic medium:

- Balance charge:
.......(2)
gives balanced equation:

So coefficient of
is more than 4
Answer:
0.0250 g
Explanation:
Step 1: Determine the molar mass of Vitamin C.
The molar mass is the mass in grams corresponding to 1 mole. In order to calculate the molar mass of vitamin C (C₆H₈O₆) we need to add the molar masses of the elements that compose it.
M(C₆H₈O₆) = 6 × M(C) + 8 × M(H) + 6 × M(O)
M(C₆H₈O₆) = 6 × 12.01 g/mol + 8 × 1.01 g/mol + 6 × 16.00 g/mol
M(C₆H₈O₆) = 176.14 g/mol
Step 2: Calculate the mass corresponding to 0.000142 mol of vitamin C.

Answer:
C.
Explanation:
If the students want to know at what percent of CO2 in the air the plant will grow at the fastest, then the percent of CO2 should be a different value for each plant in the table.
There are 2 tables that have different values for the CO2 - the tables in answer choices C and D.
Since the students only want to know how the amount of CO2 affects the plant, every other variable should remain constant.
The only answer choice that has a changing value for the percent of CO2 and a constant value for every other variable is C.
An experiment that would show that intramolecular forces are stronger than intermolecular forces will be heating a block of ice in a sealed container then allowing it to change to steam.
Intramolecular forces are the forces of attraction that hold atoms together within a molecule. Intramolecular forces require a high amount of energy to splits atoms or molecules in a chemical bonding.
Intermolecular forces are weaker forces of attraction that occur between molecules. They require lesser energy to splits molecules compared to intramolecular forces.
An experiment that would show that intramolecular forces are stronger than intermolecular forces will be heating a block of ice in a sealed container then allowing it to change to steam.
In the process, the energy required to change the state from ice to steam water is more than intermolecular forces.
Thus, we can conclude that this experiment shows that the intramolecular forces are stronger than the intermolecular forces.
Learn more about Intramolecular forces here:
brainly.com/question/13588164