Answer:
pH = 13
The higher the pH, the more basic.
Good luck :)
Answer : The fugacity in the solution is, 16 bar.
Explanation : Given,
Fugacity of a pure component = 40 bar
Mole fraction of component = 0.4
Lewis-Randall rule : It states that in an ideal solution, the fugacity of a component is directly proportional to the mole fraction of the component in the solution.
Now we have to calculate the fugacity in the solution.
Formula used :

where,
= fugacity in the solution
= fugacity of a pure component
= mole fraction of component
Now put all the give values in the above formula, we get:


Therefore, the fugacity in the solution is, 16 bar.
Weighs 0.001836 gram per cubic centimeter or 1.836 kilogram per cubic meter
Try to see if this helps
The given equation from the problem above is already balance,
N2O5 ---> 2NO2 + 0.5O2
Since, in every mole of N2O5 consumed, 2 moles of NO2 are formed, we can answer the problem by multiplying the given rate, 7.81 mol/L.s with the ratio.
(7.81 mol/L.s) x (2 moles NO2 formed/ 1 mole of N2O5 consumed)
= 15.62 mol/L.s
The answer is the rate of formation of NO2 is approximately 15.62 mol/L.s.