Answer:
C6H12O6+6O2--->6CO2+6H2O
Explanation:
So I went through all the answers and could not find the right one amongst. If I'm not wrong the reaction above is the reaction for respiration. The nearest answer is D but unfortunately the first reactant isn't in accordance with that which the question has given.
Answer:
22.4L of one mole of any gas
or you can use PV=nRT
3.45*22.4=77.28
Explanation:
Answer:
3 bonds are needed.
Explanation:
The electrons that are involved in chemical bonding are those in the outer shell of the highest energy level of the atom. The electron configuration of nitrogen (N) is 1s²2s²2p³. That means thy at each nitrogen atom has 5 valence electrons: 2 electrons in the 2s orbital and 3 electrons in the 2p orbital. To fullfil the octet, each nitrogen atom needs 3 electrons. So, they can share each other 3 electrons to form 3 simple bonds. Therefore, the nitrogen molecule (N₂) has 3 bonds involving 6 bonding electrons or a triple bond.
By definition, Bronsted-Lowry acid is a proton donor in the acid-base neutralization reaction. When a weak acid like acetylsalicylic acid is reacted with water, the water here acts as the Bronsted-Lowry base. This is possible because water has properties of amphoterism - can act as an acid or base. In this case, acetylsalicylic acid would have to donate its H+ atom to water, so that it would yield a hydronium ion, H₃O⁺. The complete net ionic reaction is shown in the picture.
So, in the reaction, the products yield are the acetylsalicylate ion and the hydronium ion.