Answer:
Option A; V = 2.92 L
Explanation:
If we assume a lot of things, like:
The gas is an ideal gas.
The temperature is constant.
The gas does not interchange mass with the environment.
Then we have the relation:
P*V = n*R*T = constant.
Where:
P = pressure
V = volume
n = number of moles
R = constant of the ideal gas
T = temperature.
We know that when P = 0.55 atm, the volume is 5.31 L
Then:
(0.55 atm)*(5.31 L) = constant
Now, when the gas is at standard pressure ( P = 1 atm)
We still have the relation:
P*V = constant = (0.55 atm)*(5.31 L)
(1 atm)*V = (0.55 atm)*(5.31 L)
Now we only need to solve this for V.
V = (0.55 atm/ 1 atm)*(5.31 L) = 2.92 L
V = 2.92 L
Then the correct option is A.
Answer:
has boiling point of 238 K
Explanation:
Boiling point depends on different intermolecular force such as molecular wight, dipole-dipole attraction force, hydrogen bonding, ionic attraction force.
Homonuclear diatomic molecules are covalent non-polar molecules and thereby free from dipole-dipole attraction force, hydrogen bonding and ionic interaction forces.
Hence, boiling point of homonuclear diatomic molecules depends solely on molecular weight.
We know, higher the molecular weight of a molecule, higher will be its boiling point. This phenomenon can be realized in terms of increasing london dispersion force with increase in molecular weight.
Decreasing order of molecular weight of halogen molecules :
> > >
So, decresing order of boiling point of halogen molecules:
> > >
Hence has boiling point of 238 K
Answer:
24 atm.
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 240 L
Initial pressure (P₁) = 2 atm
Final volume (V₂) = 20 L
Temperature = constant
Final pressure (P₂) =?
The final pressure required, can be obtained by using the Boyle's law equation as shown below:
P₁V₁ = P₂V₂
2 × 240 = P₂ × 20
480 = P₂ × 20
Divide both side by 20
P₂ = 480 / 20
P₂ = 24 atm
Thus, the final pressure required is 24 atm.
Always remember that a compound can be separated into simpler substances by chemical methods/reactions. While elements cannot be broken down into simpler substances by chemical reactions. You can do a flame test and spectrum analysis to determine whether a solid material is an element or a compound. Check the boiling and/or melting point, color or density. Also check the solid material’s reaction with oxygen, hydrogen, calcium, or various acids. Examine and study its physical chemistry. The element(s) that may be present may be identified by checking the absorption edges from an x-ray spectrum.
Answer:
72.6% Error
Explanation:
% error =
58.44 is the weight of NaCl