In an endothermic reaction products are <u>HIGHER </u>than reactants in potential energy and <u>LESS </u>stable.
Explanation:
Energy is input into the reaction in an endothermic reaction. This means the products are of a higher energy level than the reactants. Therefore the reaction increases Gibb's free energy and reduces entropy. Remember in thermodynamic stability involves an increase in entropy and a decrease in Gibbs free energy. Therefore the products are less stable than the reactants. This is why endothermic reactions do not occur spontaneously like exothermic reactions.
Answer:This is what's known as a metal displacement reaction: the lead substitutes for the copper and ends up precipitating out of solution as insoluble lead (II) sulfate. ... The weight of copper deposited was 15.86gm.
Explanation:
A residue from a gunshot is most likely gun powder, which tells you what kind of bullet was shot and the type of gun that was used to shoot the target/victim/person. Some complications may be that there is more than one gun or weapon which uses that residue, so it may be hard to pinpoint it and the bullet can't really tell you who it is unless there's DNA on the bullet, and the chemicals of the bullet may even destroy evidence.
molecules collide more frequently.
Chemical reaction mechanisms are based in the collision of molecules with certaing level of energy. More collisions implies grater probablity of reaction.
<h3>
Answer:</h3>
2.47 × 10^24 molecules
<h3>
Explanation:</h3>
One mole of a compound contains molecules equivalent to the Avogadro's number, 6.022 × 10^23.
That is, 1 mole of a compound = 6.022 × 10^23 molecules
Therefore,
1 mole of Na₂CO₃ = 6.022 × 10^23 molecules
Thus, we can calculate the number of molecules in 4.1 moles of Na₂CO₃
we get,
= 4.1 moles × 6.022 × 10^23 molecules
= 2.47 × 10^24 molecules
Hence, 4.1 moles of Na₂CO₃ contains 2.47 × 10^24 molecules