<u>step</u><u> </u><u>by</u><u> </u><u>step</u>
Na(sodium)=2.8.1
Cl (Chlorine)=2.8.7. sodium will give the chlorine the 1 valence electron to become stable ions.
<u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u>
<u>p</u><u>o</u><u>t</u><u>t</u><u>a</u><u>s</u><u>i</u><u>u</u><u>m</u><u>. </u><u>(</u><u>2</u><u>.</u><u>8</u><u>.</u><u>8</u><u>.</u><u>1</u><u>)</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>F</u><u>l</u><u>o</u><u>u</u><u>r</u><u>i</u><u>n</u><u>e</u><u>(</u><u>2</u><u>.</u><u>7</u><u>)</u>
Answer:
Explanation:
To determine the molecular formula of the compound, the empirical formula must be determined first. To determine the empirical formula, the percentage of each constituent is divided by its molar mass. This is shown below
Carbon = 60/12 = 5
Oxygen = 32/16 = 2
Hydrogen = 8/1 = 8
The next step is to divide each ratio by the smallest value. The smallest value is 2. It becomes
Carbon = 5/2 = 2.5
It is approximated to 3
Oxygen = 2/2 = 1
Hydrogen = 8/2 = 4
Therefore, the empirical formula is
C3H4O
From the given relative molecular mass of the compound, the molecular formula can be determined
about 43001 is it i think
Thermodynamic quantity equivalent to the total heat content of a system It is equal to the internal energy of the system plus the product of pressure and volume
<em><u>Question</u></em>
<em><u>What </u></em><em><u>does </u></em><em><u>it </u></em><em><u>mean </u></em><em><u>to </u></em><em><u>optimize</u></em><em><u> </u></em><em><u>a </u></em><em><u>solution?</u></em>
<em><u>To find out best possible solution for a given problem within the given constraint is generally termed as optimization</u></em>
<em><u>How </u></em><em><u>are </u></em><em><u>solution</u></em><em><u> </u></em><em><u>optimize</u></em><em><u> </u></em><em><u>?</u></em>
<em><u>To solve an optimization problem, begin by drawing a picture and introducing variables. Find an equation relating the variables. Find a function of one variable to describe the quantity that is to be minimized or maximized. Look for critical points to locate local extrema.</u></em>