Answer:
Volume of container = 0.0012 m³ or 1.2 L or 1200 ml
Explanation:
Volume of butane = 5.0 ml
density = 0.60 g/ml
Room temperature (T) = 293.15 K
Normal pressure (P) = 1 atm = 101,325 pa
Ideal gas constant (R) = 8.3145 J/mole.K)
volume of container V = ?
Solution
To find out the volume of container we use ideal gas equation
PV = nRT
P = pressure
V = volume
n = number of moles
R = gas constant
T = temperature
First we find out number of moles
<em>As Mass = density × volume</em>
mass of butane = 0.60 g/ml ×5.0 ml
mass of butane = 3 g
now find out number of moles (n)
n = mass / molar mass
n = 3 g / 58.12 g/mol
n = 0.05 mol
Now put all values in ideal gas equation
<em>PV = nRt</em>
<em>V = nRT/P</em>
V = (0.05 mol × 8.3145 J/mol.K × 293.15 K) ÷ 101,325 pa
V = 121.87 ÷ 101,325 pa
V = 0.0012 m³ OR 1.2 L OR 1200 ml
The only chemical that is a liquid at room temperature is Mercury. It's toxic, and has a high vapor pressure at room temperature.
Newton's second law of motion can be formally stated as follows:
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
This verbal statement can be expressed in equation form as follows:
a = Fnet / m
The segment that represents melting is time (minutes) and temperature.
Answer: 7
Explanation:
Before a number but after a decimal. The zeros at the end would usually mean that it doesn't count but since the numbers are before the zeros and after a decimal it's 7 sig figs