Answer : The correct option is, (D) 3600 kJ
Explanation :
Mass of octane = 75 g
Molar mass of octane = 114.23 g/mole
Enthalpy of combustion = -5500 kJ/mol
First we have to calculate the moles of octane.

Now we have to calculate the heat released in the reaction.
As, 1 mole of octane released heat = -5500 kJ
So, 0.656 mole of octane released heat = 0.656 × (-5500 kJ)
= -3608 kJ
≈ -3600 kJ
Therefore, the heat released in the reaction is 3600 kJ
Answer:
HF
Explanation:
Hf has hydrogen bonding which is the strongest intermolecular forces. The stronger the IM forces, the higher the boiling point.
Answer: There are
atoms present in 0.500 mol of
.
Explanation:
According to the mole concept, there are
atoms present in 1 mole of a substance.
In a molecule of
there is only one carbon atom present. Therefore, number of carbon atoms present in 0.500 mol of
are as follows.

Thus, we can conclude that there are
atoms present in 0.500 mol of
.
Answer: Malleability
Explanation: is a physical property of metals that defines their ability to be hammered, pressed, or rolled into thin sheets without breaking. In other words, it is the property of a metal to deform under compression and take on a new shape.
the melting point of water is 32 degrees Fahrenheit , 0 degrees Celsius. <span />