Answer:
a1 = 3.56 m/s²
Explanation:
We are given;
Mass of book on horizontal surface; m1 = 3 kg
Mass of hanging book; m2 = 4 kg
Diameter of pulley; D = 0.15 m
Radius of pulley; r = D/2 = 0.15/2 = 0.075 m
Change in displacement; Δx = Δy = 1 m
Time; t = 0.75
I've drawn a free body diagram to depict this question.
Since we want to find the tension of the cord on 3.00 kg book, it means we are looking for T1 as depicted in the FBD attached. T1 is calculated from taking moments about the x-axis to give;
ΣF_x = T1 = m1 × a1
a1 is acceleration and can be calculated from Newton's 2nd equation of motion.
s = ut + ½at²
our s is now Δx and a1 is a.
Thus;
Δx = ut + ½a1(t²)
u is initial velocity and equal to zero because the 3 kg book was at rest initially.
Thus, plugging in the relevant values;
1 = 0 + ½a1(0.75²)
Multiply through by 2;
2 = 0.75²a1
a1 = 2/0.75²
a1 = 3.56 m/s²
Answer:

Explanation:
The mass of one electron is

So the number of electrons contained in M=1.7 kg of mass is

The charge of one electron is

So, the total charge of these electrons is equal to the charge of one electron times the number of electrons:

Answer:
m v1 = (m + M) v2
v2 = m v1 / (m + M)
v2 = 7 * 74 / (74 + 65)
3.73 m/s
74 kg is too heavy for the cannonball (over 150 lbs)
Answer:
Temperature after ignition=7883.205 K
Explanation:
The number of moles is,
n=PV/RT
=(1.18x10^6)(47.9x10^-6)/8.314(325)
= 0.0209 moles
a) In this process volume is constant
Q=U
=nCv.dT
dT= Q/nCv
=1970/(1.5x8.314)(0.0209)
= 7558.205 K
The final temperature is,
= 7558.205+325
= 7883.205 K
1.) potential energy
2.)potential and kinetic
3.)The roller coaster car has the most kinetic energy at point X i know this because the car is moving and kinetic energy has the power to move or change things therefore point X is when the roller coaster car has the most energy.
4.)potential energy
5.)kinetic energy
6.) potential and kinetic energy