The temperature of the gas is 41.3 °C.
Answer:
The temperature of the gas is 41.3 °C.
Explanation:
So on combining the Boyle's and Charles law, we get the ideal law of gas that is PV=nRT. Here P is the pressure, V is the volume, n is the number of moles, R is gas constant and T is the temperature. The SI unit of pressure is atm. So we need to convert 1 Pa to 1 atm, that is 1 Pa = 9.86923×
atm. Thus, 171000 Pa = 1.6876 atm.
We know that the gas constant R = 0.0821 atmLMol–¹K-¹. Then the volume of the gas is given as 50 L and moles are given as 3.27 moles.
Then substituting all the values in ideal gas equation ,we get
1.6876×50=3.27×0.0821×T
Temperature = 
So the temperature is obtained to be 314.3 K. As 0°C = 273 K,
Then 314.3 K = 314.3-273 °C=41.3 °C.
Thus, the temperature is 41.3 °C.
When the spring is extended by 44.5 cm - 34.0 cm = 10.5 cm = 0.105 m, it exerts a restoring force with magnitude R such that the net force on the mass is
∑ F = R - mg = 0
where mg = weight of the mass = (7.00 kg) g = 68.6 N.
It follows that R = 68.6 N, and by Hooke's law, the spring constant is k such that
k (0.105 m) = 68.6 N ⇒ k = (68.6 N) / (0.105 m) ≈ 653 N/m
Answer:
a) v = 2,9992 10⁸ m / s
, b) Eo = 375 V / m
, B = 1.25 10⁻⁶ T,
c) λ = 3,157 10⁻⁷ m, f = 9.50 10¹⁴ Hz
, T = 1.05 10⁻¹⁵ s
, UV
Explanation:
In this problem they give us the equation of the traveling wave
E = 375 cos [1.99 10⁷ x + 5.97 10¹⁵ t]
a) what the wave velocity
all waves must meet
v = λ f
In this case, because of an electromagnetic wave, the speed must be the speed of light.
k = 2π / λ
λ = 2π / k
λ = 2π / 1.99 10⁷
λ = 3,157 10⁻⁷ m
w = 2π f
f = w / 2 π
f = 5.97 10¹⁵ / 2π
f = 9.50 10¹⁴ Hz
the wave speed is
v = 3,157 10⁻⁷ 9.50 10¹⁴
v = 2,9992 10⁸ m / s
b) The electric field is
Eo = 375 V / m
to find the magnetic field we use
E / B = c
B = E / c
B = 375 / 2,9992 10⁸
B = 1.25 10⁻⁶ T
c) The period is
T = 1 / f
T = 1 / 9.50 10¹⁴
T = 1.05 10⁻¹⁵ s
the wavelength value is
λ = 3,157 10-7 m (109 nm / 1m) = 315.7 nm
this wavelength corresponds to the ultraviolet