Let the mass of the person be m. Total momentum is conserved (because the exterior forces on the system are balanced), especially the component in the vertical direction.
Given that,
Mass of gallon is M
Let man mass be m
Velocity of man is v
Let velocity if ballot be Vb
When the person begin to move we have
Conservation of momentum
mv + MVb=0
MVb=-mv
Vb= -(m/M) v
Given that the mass of man is less than mass of balloon. i.e. m<M
So, if m<M, then, m/M <1
Therefore, .
Vb= -(m/M) v
Vb< -v
This implies that the velocity of balloon is less than the velocity of man and if is also moving in opposite direction
So the man is moving upward, then the balloon is moving downward and it's velocity is less than the velocity of man,
The answer is C
Down with a speed less than v
<span>Germanium
To determine which melts first, convert their melting temperatures so they're both expressed on same scale. It doesn't matter what scale you use, Kelvin, Celsius, of Fahrenheit. Just as long as it's the same scale for everything. Since we already have one substance expressed in Kelvin and since it's easy to convert from Celsius to Kelvin, I'll use Kelvin. So convert the melting point from Celsius to Kelvin for Gold by adding 273.15
1064 + 273.15 = 1337.15 K
So Germanium melts at 1210K and Gold melts at 1337.15K. Germanium has the lower melting point, so it melts first.</span>
Explanation:
This is true because at maximum height, the velocity is 0
Answer:
flattened by pressure; squeezed or pressed together.
Explanation:
Answer:
θ = 4.716 10⁻⁶ rad
Explanation:
In order for the releases to be considered separate, they must meet the Rayleigh criterion that establishes that the maximum diffraction of one star must coincide with the first minimum of the diffraction pattern of the second star.
We use the diffraction equation for a slit
a sin θ = m λ
The minimum occurs at m = 1
sin θ = λ / a
Since the angles in these systems are very small, we can approximate the sine to its angle in radians
θ = λ / a
The telescope has a circular aperture whereby polar cords should be used, which introduces a constant number
θ = 1.22 λ / a
Let's calculate
θ = 1.22 518 10⁻⁹ / 13.4 10⁻²
θ = 4.716 10⁻⁶ rad