Since Lutetium-177 is a beta and gamma emitter, the daughter nuclide produced from the decay of this radioisotope is 177Hf.
Beta emission of a radioisotope yields a daughter nuclide whose amass number is the same as that of its parent nucleus but its atomic number is greater is greater than that of the parent nucleus by 1 unit.
Also, gamma emission does not lead to any change in the mass number of atomic number of the daughter nucleus produced.
Hence, the stable daughter nuclide, 177Hf is produced.
Learn more: brainly.com/question/1770619
Answer:
3.82 x 10²¹ molecules As₂O₃
Explanation:
To find the amount of molecules arsenic (III) oxide (As₂O₃), you need to (1) convert kg to lbs, then (2) convert g As₂O₃ to moles As₂O₃ (via molar mass), and then (3) convert moles to molecules (via Avogadro's number).
1 kilogram = 2.2 lb
Molar Mass (As₂O₃): 2(74.992 g/mol) + 3(15.998 g/mol)
Molar Mass (As₂O₃): 197.978 g/mol
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
0.0146 g As₂O₃ 1 kg 189 lb
------------------------ x --------------- x ------------------ x ................
1 kg 2.2 lb
1 mole 6.022 x 10²³ molecules
x ------------------ x --------------------------------------- = 3.82 x 10²¹ molecules As₂O₃
197.978 g 1 mole
Answer:
We could do two 1:50 dilutions and one 1:4 dilutions.
Explanation:
Hi there!
A solution that is 1000 ug/ ml (or 1000 mg / l) is 1000 ppm.
Knowing that 1 ppm = 1000 ppb, 100 ppb is 0.1 ppm.
Then, we have to dilute the stock solution (1000 ppm / 0.1 ppm) 10000 times.
We could do two 1:50 dilutions and one 1:4 dilutions (50 · 50 · 4 = 10000). Since the first dilution is 1:50, you will use the smallest quantity of the stock solution (if we use the 10.00 ml flask):
First step (1:50 dilution):
Take 0.2 ml of the stock solution using the third dispenser (20 - 200 ul), and pour it in the 10.00 ml flask. Fill with water to the mark (concentration : 1000 ppm / 50 = 20 ppm).
Step 2 (1:50 dilution):
Take 0.2 ml of the solution made in step 1 and pour it in another 10.00 ml flask. Fill with water to the mark. Concentration 20 ppm/ 50 = 0.4 ppm)
Step 3 (1:4 dilution):
Take 2.5 ml of the solution made in step 3 (using the first dispenser 1 - 5 ml) and pour it in a 10.00 ml flask. Fill with water to the mark. Concentration 0.4 ppm / 4 = 0.1 ppm = 100 ppb.
25mL if water as the highest average of the kinetic energy