Divide the change in speed by the time for the change.
Answer:
a.
b. 
Explanation:
<u>Given:</u>
- Velocity of the particle, v(t) = 3 cos(mt) = 3 cos (0.5t) .
<h2>
(a):</h2>
The acceleration of the particle at a time is defined as the rate of change of velocity of the particle at that time.

At time t = 3 seconds,

<u>Note</u>:<em> The arguments of the sine is calculated in unit of radian and not in degree.</em>
<h2>
(b):</h2>
The velocity of the particle at some is defined as the rate of change of the position of the particle.

For the time interval of 2 seconds,

The term of the left is the displacement of the particle in time interval of 2 seconds, therefore,

It is the displacement of the particle in 2 seconds.
Answer:
calar quantity, length of path. displacement: vector quanity, "as the crow flies" difference between start and finish regardless of path taken. Term.
Explanation: