The answer:
the relationship between elementary charge, potential difference and electrical potential energy is given by
E= qV
E: lectrical potential energy
q: elementary charge
V: potential difference
but we have e=abs val(q)=3
so we have E= qV=3ex4.5V=<span>13.5 eV
</span>
the answer is <span>(4)13.5 eV</span>
Answer:
Mechanical Energy (initial) = Mechanical energy (final)
Ep(initial) + Ek(initial) = Ep(final) + Ek(final)
mgh(initial) + 1/2mv²(initial) = mgh(final) + 1/2mv²(final)
m being the mass of the penguin (kg)
g being gravitational acceleration (9.80 m/s²)
v(initial) being zero
h(final) being zero,i.e. final height is zero
v(final) being final velocity
solve for h(initial) being initial height at the top of the glacier
answer will be in metres
NB: don't forget to square the velocity
Explanation:
Since they mentioned frictionless, we know that this is a closed system therefore we are free to use this equation of conservation of mechanical energy
Don't forget to rate answer
The correct answer is
<span>B) UV waves are higher frequency and carry more energy.
In fact, UV waves have higher frequency than visible light. For comparison, visible light has frequency in the range 430-770 THz (</span>

)<span>, while ultraviolets (UV) have frequency higher than these values (at the order of 1 PHz, </span>

).
The energy of electromagnetic radiation is proportional to its frequency, according to the equation

where h is the Planck constant and f is the frequency. We see that the higher the frequency, the greater the energy, so UV waves carry more energy than visible light.
If only that were true, you would see tidal power stations
all up and down every coast by now.
<span>The proton differs from the electron in sign although they have the same value. Like the electron, a proton will gain 215 electron-volts of eV in Kinetic energy. So 1.602Ă—10^-19 J * 215 = 344.43 * 10^(-19) J.
But K. E. = mv^2 / 2, so v^2 = 2 * K.E/m. The mass of a proton is 1.673 * 10^-27 kg. So v = âš(2 * 344.43 * 10^(-19))/1.673Ă—10^-27 = 688.86 * 10^(-19)/1.673Ă—10^(-27) = 411.75 * 10^(-19-(-27)) = âš411.75 * 10^(8) = 202196.56
Also for the electron we have v^2 = 2 * K.E/m but here mass, m, = 9.109 * 10^-31 kg. So we have v = âš(2 * 344.43 * 10^(-19)) / 9.109 * 10^-31 = 688.86 * 10^(-19)/ 9.109 * 10^-31 = 75.624 * 10^(-19 - (-31)) = 75.624 * 10^(21) and v = 2.749 * 10^11</span>