Answer:
a) 
b)
parallel to the earth surface.
- In this case according to the Fleming's left hand rule the direction of movement of bee must be in a direction parallel to the earth surface and perpendicular to the electric field at the same time.
Explanation:
Given:
mass of the bee, 
charge acquired by the bee, 
a.
Electrical field near the earth surface, 
Now the electric force on the bee:
we know:




The weight of the bee:



Therefore the ratio :


b.
The condition for the bee to hang is its weight must get balanced by the electric force acing equally in the opposite direction.
So,



parallel to the earth surface.
- In this case according to the Fleming's left hand rule the direction of movement of bee must be in a direction parallel to the earth surface and perpendicular to the electric field at the same time.
Answer:
The magnetic field along x axis is

The magnetic field along y axis is zero.
The magnetic field along z axis is

Explanation:
Given that,
Length of the current element 
Current in y direction = 5.40 A
Point P located at 
The distance is


We need to calculate the magnetic field
Using Biot-savart law

Put the value into the formula

We need to calculate the value of 



Put the value into the formula of magnetic field


Hence, The magnetic field along x axis is

The magnetic field along y axis is zero.
The magnetic field along z axis is

D. 980, this is the best answer because 35 x 7 is 980 :)
Answer:
Ф = 2.179 eV
Explanation:
This exercise has electrons ejected from a metal, which is why it is an exercise on the photoelectric effect, which is explained assuming the existence of energy quanta called photons that behave like particles.
E = K + Ф
the energy of the photons is given by the Planck relation
E = h f
we substitute
h f = K + Ф
Ф= hf - K
the speed of light is related to wavelength and frequency
c = λ f
f = c /λ
Φ =
let's reduce the energy to the SI system
K = 0.890 eV (1.6 10⁻¹⁹ J / 1eV) = 1.424 10⁻¹⁹ J
calculate
Ф = 6.63 10⁻³⁴ 3 10⁸/405 10⁻⁹ -1.424 10⁻¹⁹
Ф = 4.911 10⁻¹⁹ - 1.424 10⁻¹⁹
Ф = 3.4571 10⁻¹⁹ J
we reduce to eV
Ф = 3.4871 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)
Ф = 2.179 eV
Answer:
Explanation:
Explain how a projectile might be modified to decrease the air resistance impacting its trajectory.