Answer:
Explanation:
Initial kinetic energy of M = 1/2 M vi²
let final velocity be vf
v² = u² + 2a s
vf² = vi² + 2 (F / M) x D
Kinetic energy
= 1/2 Mvf²
= 1/2 M ( vi² + 2 (F / M) x D
1/2 M vi² + FD
Ratio with initial value
1/2 M vi² + FD) / 1/2 M vi²
RK = 1 + FD / 2 M vi²
Answer:
39.7 m
Explanation:
First, we conside only the last second of fall of the body. We can apply the following suvat equation:

where, taking downward as positive direction:
s = 23 m is the displacement of the body
t = 1 s is the time interval considered
is the acceleration
u is the velocity of the body at the beginning of that second
Solving for u, we find:

Now we can call this velocity that we found v,
v = 18 m/s
And we can now consider the first part of the fall, where we can apply the following suvat equation:

where
v = 18 m/s
u = 0 (the body falls from rest)
s' is the displacement of the body before the last second
Solving for s',

Therefore, the total heigth of the building is the sum of s and s':
h = s + s' = 23 m + 16.7 m = 39.7 m
Answer:
24.531 m
Explanation:
t = Time taken = 1.7 s
u = Initial velocity = 6.1 m/s
v = Final velocity
s = Displacement
g = Acceleration due to gravity = 9.81 m/s² = a
Equation of motion

The initial height of the rock above the ground is 24.531 m
Answer:The specific heat capacity of water is 4,200 joules per kilogram per degree Celsius (J/kg°C). This means that it takes 4,200 J to raise the temperature of 1 kg of water by 1°C.
Explanation:
In order to find total magnification of a microscope, you need to multiply the power of eyepiece and objective lens.
Hope this helps!