Answer:
24) W = 75 [J]; 25) W = 1794[J]; 26) n = 8.8 (times) or 9 (times)
Explanation:
24) This problem can be solved by means of the following equation.

where:
DU = internal energy difference [J]
Q = Heat transfer [J]
W = work [J]
Since there are no temperature changes the internal energy change is equal to zero
DU = 0
therefore:

The work is equal to the heat transfered, W = 75 [J].
25) The heat transfer can be calculated by means of the following equation.
![Q = m*c_{p}*DT\\where:\\m = mass = 0.4[kg]\\c_{p} = specific heat = 897[J/kg*K]\\DT= 5 [C]](https://tex.z-dn.net/?f=Q%20%3D%20m%2Ac_%7Bp%7D%2ADT%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%200.4%5Bkg%5D%5C%5Cc_%7Bp%7D%20%3D%20specific%20heat%20%3D%20897%5BJ%2Fkg%2AK%5D%5C%5CDT%3D%205%20%5BC%5D)
Q = 0.4*897*5 = 1794[J]
Work is equal to heat transfer, W = 1794[J]
26) Each time the bag falls the potential energy is transformed into heat energy, which is released into the environment. In this way the potential energy is equal to the developed heat.

where:
m = mass = 0.5[kg]
g = gravity = 9.81[m/s^2]
h = 1.5 [m]
![E_{p}=0.5*9.81*1.5\\E_{p}=7.36[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3D0.5%2A9.81%2A1.5%5C%5CE_%7Bp%7D%3D7.36%5BJ%5D)
The heat developed can be calculated by means of the following equation.
![Q=m*c_{p}*DT\\Q=0.5*130*1\\Q=65[J]](https://tex.z-dn.net/?f=Q%3Dm%2Ac_%7Bp%7D%2ADT%5C%5CQ%3D0.5%2A130%2A1%5C%5CQ%3D65%5BJ%5D)
The number of times will be calculated as follows
n = 65/7.36
n = 8.8 (times) or 9 (times)
Answer:
Impedance = 93.75 ohms
Current = 1.81 A
Explanation:
Resistance = R = 80 ohms
Inductance = L = 0.2 H
Inductive reactance = XL =
= ωL = (2πf) L
= 2 (3.14) (60)(0.2) = 75.398 Ohms
Capacitive reactance = 1 / ωC = 1/(2πf)C = 1 / [(2π)(60)(0.1 × 10⁻3)]
= 26.526 Ohms
Impedance = Z =
=
= 93.747 ohms
Voltage =
× 120 = 169.7056 V
Current = I = V ÷ R = (169.7056) ÷ 93,747 = 1.81 A
<h2>
Option C is the correct answer.</h2>
Explanation:
Specific gravity of fluid = 0.750
Density of fluid = Specific gravity of fluid x Density of water
Density of fluid = 0.750 x 1000
Density of fluid = 750 kg/m³
Mass of fluid = 22.5 kg
We have
Mass = Volume x Density
22.5 = Volume x 750
Volume = 0.03 m³ = 30 L
Option C is the correct answer.
Answer:
(i) The wavelength is 0.985 m
(ii) The frequency of the wave is 36.84 Hz
Explanation:
Given;
mass of the string, m = 0.0133 kg
tensional force on the string, T = 8.89 N
length of the string, L = 1.97 m
Velocity of the wave is:

(i) The wavelength:
Fourth harmonic of a string with two nodes, the wavelength is given as,
L = 2λ
λ = L/2
λ = 1.97 / 2
λ = 0.985 m
(ii) Frequency of the wave is:
v = fλ
f = v / λ
f = 36.29 / 0.985
f = 36.84 Hz
Answer:
The average speed can be calculated as the quotient between the distance travelled and the time needed to travel that distance.
To go to the school, he travels 2.4 km in 0.6 hours, then here the average speed is:
s = (2.4km)/(0.6 hours) = 4 km/h
To return to his home, he travels 2.4km again, this time in only 0.4 hours, then here the average speed is:
s' = (2.4 km)/(0.4 hours) = 6 km/h.
Now, if we want the total average speed (of going and returning) we have that the total distance traveled is two times the distance between his home and school, and the total time is 0.6 hours plus 0.4 hours, then the average speed is:
S = (2*2.4 km)/(0.6 hours + 0.4 hours)
S = (4.8km)/(1 h) = 4.8 km/h