Answer:
<h2>Gravity :</h2><h3>the force that attracts a body towards the centre of the earth, or towards any other physical body having mass.</h3>
<h2>Solar day</h2><h3>A solar day is the time it takes for the Earth to rotate about its axis so that the Sun appears in the same position in the sky.</h3><h2> or</h2><h3>It is the time between successive meridian transits of the sun at a particular place.</h3>
On a similar problem wherein instead of 480 g, a 650 gram of bar is used:
Angular momentum L = Iω, where
<span>I = the moment of inertia about the axis of rotation, which for a long thin uniform rod rotating about its center as depicted in the diagram would be 1/12mℓ², where m is the mass of the rod and ℓ is its length. The mass of this particular rod is not given but the length of 2 meters is. The moment of inertia is therefore </span>
<span>I = 1/12m*2² = 1/3m kg*m² </span>
<span>The angular momentum ω = 2πf, where f is the frequency of rotation. If the angular momentum is to be in SI units, this frequency must be in revolutions per second. 120 rpm is 2 rev/s, so </span>
<span>ω = 2π * 2 rev/s = 4π s^(-1) </span>
<span>The angular momentum would therefore be </span>
<span>L = Iω </span>
<span>= 1/3m * 4π </span>
<span>= 4/3πm kg*m²/s, where m is the rod's mass in kg. </span>
<span>The direction of the angular momentum vector - pseudovector, actually - would be straight out of the diagram toward the viewer. </span>
<span>Edit: 650 g = 0.650 kg, so </span>
<span>L = 4/3π(0.650) kg*m²/s </span>
<span>≈ 2.72 kg*m²/s</span>
<h2>F = kAρv²</h2>
Explained in the attachment !
<h3>Hope it helps you!!</h3>
Answer:
time machine popularized the concept of time travel by mechanical means. Yes a long time ago, mahal