Answer:
number of carbon-carbon single (C - C) bonds: 1
number of carbon-hydrogen single (C H) bonds: 5
number of nitrogen-hydrogen sing le (N H) bonds:2
number of lone pairs: 1
Explanation:
Ethanamine is a colourless gas having a strong 'ammonia- like' odour. It contains the -NH2 group which makes it an amine. It contains one carbon-carbon bond, five carbon-hydrogen bonds and two nitrogen-hydrogen bonds.
Nitrogen, being sp3 hybridized in the compound has a lone pair of electrons localized on one of the sp3 hybridized orbitals of nitrogen while one sp3 hybridized orbital of nitrogen is used to form a carbon-nitrogen bond. The other two sp3 hybridized orbitals on nitrogen are used to form the two nitrogen-hydrogen bonds.
Answer:
18.066 × 10²³ particles
Explanation:
Given data:
Number of moles of Sn = 3 mol
Number of representative particles = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For 3 mole of Sn:
3 × 6.022 × 10²³ particles
18.066 × 10²³ particles
Explanation:
Divide the mass of chlorine by the molar mass of cobalt chloride, then multiply by 100.
Molar Mass of Cobalt Chloride.
Mass of Chlorine in Cobalt Chloride.
Percent Composition of Chlorine.
To determine the standard heat of reaction, ΔHrxn°, let's apply the Hess' Law.
ΔHrxn° = ∑(ν×ΔHf° of products) - ∑(ν×ΔHf° of reactants)
where
ν si the stoichiometric coefficient of the substances in the reaction
ΔHf° is the standard heat of formation
The ΔHf° for the substances are the following:
CH₃OH(l) = -238.4 kJ/mol
CH₄(g) = -74.7 kJ/mol
O₂(g) = 0 kJ/mol
ΔHrxn° = (1 mol×-74.7 kJ/mol) - ∑(1 mol×-238.4 kJ/mol)
ΔHrxn° = +163.7 kJ
Answer:
Manganese trinitrate or manganese(III) nitrate
Explanation: