The mass in grams of NH₃ produced from the reaction is 3.4 g
<h3>Balanced equation</h3>
We'll begin by writing the balanced equation for the reaction. This illustrated below:
N₂ + 3H₂ -> 2NH₃
From the balanced equation above,
1 dm³ of N₂ reacted to produced 2 dm³ NH₃
<h3>How to determine the volume of NH₃ produced</h3>
From the balanced equation above,
1 dm³ of N₂ reacted to produced 2 dm³ NH₃
Therefore,
2.24 dm³ of N₂ will react to produce = 2.24 × 2 = 4.48 dm³ of NH₃
<h3>How to determine the mass of NH₃ produced</h3>
We'll begin by obtained the mole of 4.48 dm³ of NH₃. Details below:
22.4 dm³ = 1 mole NH₃
Therefore,
4.48 dm³ = 4.48 / 22.4
4.48 dm³ = 0.2 mole of NH₃
Finally, we shall determine the mass of NH₃ as follow:
- Molar mass of NH₃ = 17 g/mol
- Mole of NH₃ = 0.2 mole
- Mass of NH₃ =?
Mass = mole × molar mass
Mass of NH₃ = 0.2 × 17
Mass of NH₃ = 3.4 g
Learn more about stoichiometry:
brainly.com/question/13196642
#SPJ1
I think that's the one with like snow hail and sleet
Answer:

Explanation:
For example, the energy released in burning 1 mol of octane, a component of gasoline, is about 5000 kJ.
The energy released in the fission of 1 mol of uranium-235 is
about 1.5 × 10¹⁰ kJ
.
The ratio is

HEY THERE
THATS EASY...
YOU CAN USE A MAGNET TO ATTRACT THE IRON FILLINGS WHICH WOULD THEN SEPARATE FROM THE SAND.
<span>44.01 g/mol hope it helps</span>