Answer:
17.5 m/s²
1.90476 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
Force
Initial acceleration of the rocket is 17.5 m/s²
Time taken by the rocket to reach 120 km/h is 1.90476 seconds
Change in the velocity of a rocket is given by the Tsiolkovsky rocket equation
where,
= Initial mass of rocket with fuel
= Final mass of rocket without fuel
= Exhaust gas velocity
Hence, the change in velocity increases as the mass decreases which changes the acceleration
<em>Quantities that determine the kinetic energy of a body are its </em><em>mass and velocity </em>
Answer: <em>mass and velocity </em>
Explanation:
The kinetic energy of a body is the energy possessed by an object by virtue of its motion. It is given by the equation
Where m represents mass of the body and v represents its velocity.
Two bodies of equal velocity but different mass the heavier body will have greater kinetic energy. When an object is at rest its velocity is equal to zero. Thus its kinetic energy will be zero. Hence it can be concluded that only moving bodies have kinetic energy.
Stationary objects placed at a height possess potential energy which is the energy by virtue of their position or configuration. The total mechanical energy of a system is the sum of potential and kinetic energy.
Answer:
B. The atom gains 1 electron, to make a total of 18 electrons.
Explanation:
Chlorine is the 17th element in the periodic table, so it has atomic number 17:
Z = 17
This means that a neutral atom of chlorine has 17 protons and 17 electrons.
When a chlorine atom gains 1 electron, its electric charge (initially zero) becomes -1, since the electron has negative charge of -1 (in elemntary charge units). This also means that the number of electrons in the ion is now
17 + 1 = 18
So the correct answer is
B. The atom gains 1 electron, to make a total of 18 electrons