Assuming the object is on earth the objects weight would be equal to its mass multiplied by the gravitational field constant
mass=22kg
g=9.80665N/kg
weight=(22 kg) (9.80665 N/kg)=215.7463N
generally g is rounded to be 10 N/kg so for any question where it asks the weight given the mass just multiply by 10 and that should suffice. In this case the answer would be 220 N
Answer:
Correct, is there another part to the question?
The answer is has no moons. Mars has two moons
Answers:
a) 30 m/s
b) 480 N
Explanation:
The rest of the question is written below:
a. What is the final speed of the falcon and pigeon?
b. What is the average force on the pigeon during the impact?
<h3>a) Final speed</h3>
This part can be solved by the Conservation of linear momentum principle, which establishes the initial momentum
before the collision must be equal to the final momentum
after the collision:
(1)
Being:


Where:
the mas of the peregrine falcon
the initial speed of the falcon
is the mass of the pigeon
the initial speed of the pigeon (at rest)
the final speed of the system falcon-pigeon
Then:
(2)
Finding
:
(3)
(4)
(5) This is the final speed
<h3>b) Force on the pigeon</h3>
In this part we will use the following equation:
(6)
Where:
is the force exerted on the pigeon
is the time
is the pigeon's change in momentum
Then:
(7)
(8) Since 
Substituting (8) in (6):
(9)
(10)
Finally:

Answer:
684.5 is the weight on mars and 1813 on earth
Explanation:
185*3.7=684.5 185*9.8=1813 you multiply for earth by 9.8 because that's the gravity on earth and you multiply by 3.7 because that's the gravity on mars