Answer:
V (initial vertical velocity) = 45.4 sin 31.2 = 23.52 m/s
1/2 m V^2 = m g h conservation of energy
h = V^2 / (2 g) = 23.52^2 / 19.6 = 28.2 m max height
Check:
t = 28.2 / 9.8 = 2.88 sec time to reach max height
h = 23.52 * 2.88 - 1/2 g 2.88^2 = 27.1 m
The new magnitude of the force of attraction will be 6 times the original force of attraction
<h3>How to determine the initial force </h3>
- Mass 1 = m₁
- Mass 2 = m₂
- Gravitational constant = G
- Distance apart = r
- Initial force (F₁) = ?
F = Gm₁m₂ / r²
F₁ = Gm₁m₂ / r²
<h3>How to determine the new force </h3>
- Mass 1 = 2m₁
- Mass 2 = 3m₂
- Gravitational constant = G
- Distance apart (r) = r
- New force (F₂) =?
F = Gm₁m₂ / r²
F₂ = G × 2m₁ × 3m₂ / r²
F₂ = 6Gm₁m₂ / r²
But
F₁ = Gm₁m₂ / r²
Therefore
F₂ = 6Gm₁m₂ / r²
F₂ = 6F₁
Thus, the new magnitude of the force of attraction will be 6 times the original force of attraction
Learn more about gravitational force:
brainly.com/question/21500344
#SPJ1
Answer
Given,
Average speed of Malcolm and Ravi = 260 km/h
Let speed of the Malcolm be X and speed of the Ravi Y.
From the given statement

....(i)
....(ii)
Adding both the equations
3 X = 600
X = 200 km/h
Putting value in equation (i)
Y = 520 - 200
Y = 320 Km/h
Speed of Malcolm = 200 Km/h
Speed of Ravi = 320 Km/h
I think the correct answer from the choices listed above is option D. The model of the universe that suggests that the sun is the center of the universe was first brought by Copernicus. His model is known as the "Sun centered model".
Answer:
markers are 29.76 m far apart in the laboratory
Explanation:
Given the data in the question;
speed of particle = 0.624c
lifetime = 159 ns = 1.59 × 10⁻⁷ s
we know that; c is speed of light which is equal to 3 × 10⁸ m/s
we know that
distance = vt
or s = ut
so we substitute
distance = 0.624c × 1.59 × 10⁻⁷ s
distance = 0.624(3 × 10⁸ m/s) × 1.59 × 10⁻⁷ s
distance = 1.872 × 10⁸ m/s × 1.59 × 10⁻⁷ s
distance = 29.76 m
Therefore, markers are 29.76 m far apart in the laboratory