V=IR
60-V
The current that passes through a 10-ohm resistor = I
I=60/10
6 amperes
Answer:
Static, sliding, and rolling friction occur between solid surfaces. Static friction is strongest, followed by sliding friction, and then rolling friction, which is weakest. Fluid friction occurs in fluids, which are liquids or gases.
Explanation:
<u>Answer:</u>
<em>1. A NaCl solution with a concentration of 50g/100mL of water at 40°C:</em> The NaCl solution with a given concentration is saturated at this temperature .As the temperature increases the solution will more dissolves.
<em>2. A sugar solution with a concentration of 200g/100mL of water at 40°C: </em>The sugar solution with a given concentration is saturated at this temperature. As the temperature increases the solution will more dissolves.
<em>3. A sugar solution with a concentration of 240g/100mL of water at 40°C:</em> The sugar solution with a given concentration is saturated at given temperature.
Answer:
a) T = 608.22 N
b) T = 608.22 N
c) T = 682.62 N
d) T = 533.82 N
Explanation:
Given that the mass of gymnast is m = 62.0 kg
Acceleration due to gravity is g = 9.81 m/s²
Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.
So;
To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;
T = mg
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs the rope at a constant rate tension in the string is
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs up the rope with an upward acceleration of magnitude
a = 1.2 m/s²
the tension in the string is T - mg = ma (Since acceleration a is upwards)
T = ma + mg
= m (a + g )
= (62.0 kg)(9.81 m/s² + 1.2 m/s²)
= (62.0 kg) (11.01 m/s²)
= 682.62 N
When the gymnast climbs up the rope with an downward acceleration of magnitude
a = 1.2 m/s² the tension in the string is mg - T = ma (Since acceleration a is downwards)
T = mg - ma
= m (g - a )
= (62.0 kg)(9.81 m/s² - 1.2 m/s²)
= (62.0 kg)(8.61 m/s²)
= 533.82 N