Answer:
The person going to the highest apartment door.
Explanation:
Since gravitational potential energy, U = mgh where h is the height above the ground. The person with the highest gravitational potential energy would be the person going to the highest apartment door if we assume that their masses are the same.
Answer:
The correct answers are It is the resistance of an object to changes in its motion, and It is a force
A single electron has a charge of

Therefore, if we have an excess of

electrons, the total net charge will be the product between the charge of a single electron and the total number of electrons in excess:
Answer:
a
The focal length of the lens in water is 
b
The focal length of the mirror in water is 
Explanation:
From the question we are told that
The index of refraction of the lens material = 
The index of refraction of the medium surrounding the lens = 
The lens maker's formula is mathematically represented as
![\frac{1}{f} = (n -1) [\frac{1}{R_1} - \frac{1}{R_2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bf%7D%20%3D%20%28n%20-1%29%20%5B%5Cfrac%7B1%7D%7BR_1%7D%20-%20%5Cfrac%7B1%7D%7BR_2%7D%20%20%5D)
Where
is the focal length
is the index of refraction
are the radius of curvature of sphere 1 and 2 of the lens
From the question When the lens in air we have
![\frac{1}{f_{air}} = (n-1) [\frac{1}{R_1} - \frac{1}{R_2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bf_%7Bair%7D%7D%20%3D%20%28n-1%29%20%5B%5Cfrac%7B1%7D%7BR_1%7D%20-%20%5Cfrac%7B1%7D%7BR_2%7D%20%20%5D)
When immersed in liquid the formula becomes
![\frac{1}{f_{water}} = [\frac{n_2}{n_1} - 1 ] [\frac{1}{R_1} - \frac{1}{R_2} ]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bf_%7Bwater%7D%7D%20%3D%20%5B%5Cfrac%7Bn_2%7D%7Bn_1%7D%20-%201%20%5D%20%5B%5Cfrac%7B1%7D%7BR_1%7D%20-%20%5Cfrac%7B1%7D%7BR_2%7D%20%20%5D)
The ratio of the focal length of the the two medium is mathematically evaluated as
![\frac{f_water}{f_{air}} = \frac{n_2 -1}{[\frac{n_2}{n_1} - 1] }](https://tex.z-dn.net/?f=%5Cfrac%7Bf_water%7D%7Bf_%7Bair%7D%7D%20%3D%20%5Cfrac%7Bn_2%20-1%7D%7B%5B%5Cfrac%7Bn_2%7D%7Bn_1%7D%20-%201%5D%20%7D)
From the question
= 79.0 cm

and the refractive index of water(material surrounding the lens) has a constant value of 


b
The focal length of a mirror is dependent on the concept of reflection which is not affected by medium around it.
Work is force times distance. So here we have
W=(5000N)x(3000m)=1.5x10^7J
Or 15MJ (megajoules)