Answer:
copper will have more change in temperature as compare with aluminum
Explanation:
Hot piece of copper is made in contact with cold piece of aluminium
So here thermal energy transfer will take place from copper to aluminium
so by energy conservation we can say that heat given by copper is same as the heat absorbed by aluminium.
now we have

here we know that
= specific heat capacity of copper
= specific heat capacity of aluminum
given that specific heat capacity of aluminium is more than double that of copper
so we can say

so here if the mass of copper and aluminium is same then

so temperature change of copper is twice the temperature change of aluminium
So copper will have more change in temperature as compare with aluminum
Answer:
C1 + C2 = 30 parallel connection
C1 * C2 / (C1 + C2) = 7.2 series connection
C1 * C2 = 7.2 * (C1 + C2) = 216
C2 + 216 / C2 = 30 using first equation
C2^2 + 216 = 30 C2
C2^2 - 30 C2 + 216 = 0
C2 = 12 or 18 solving the quadratic
Then C1 = 18 or 12
Answer:
ω₂ = 1.9025 x 10⁻⁶ rad/s
Explanation:
given,
mass of star = 1.61 x 10³¹ kg
angular velocity = 1.60 x 10⁻⁷ rad/s
diameter suddenly shrinks = 0.29 x present size
r₂ = 0.29 r₁
using conservation of angular momentum
I₁ ω₁ = I₂ ω₂





ω₂ = 1.9025 x 10⁻⁶ rad/s