1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
o-na [289]
3 years ago
9

Which graph shows the fastest speed?

Physics
1 answer:
Elodia [21]3 years ago
5 0

Answer:

Where is the graph? I need a picture

You might be interested in
Velocity of a Hot-Air Balloon A hot-air balloon rises vertically from the ground so that its height after t sec is given by the
Inessa [10]

Answer:

Explanation:

Given the height reached by a balloon after t sec modeled by the equation

h=1/2t²+1/2t

a) To calculate the height of the balloon after 40 secs we will substitute t = 40 into the modeled equation and calculate the value of t

If h(t)=1/2t²+1/2t

h(40) = 1/2(40)²+1/2 (40)

h(40) = 1600/2 + 40/2

h(40) = 800 + 20

h(40) = 820 feet

The height of the balloon after 40 secs is 820 feet

b) Velocity is the change of displacement of a body with respect to time.

v = dh/dt

v(t) = 2(1/2)t²⁻¹ + 1/2

v(t) = t + 1/2

when v = 0sec

v(0) = 0 + 1/2

v(0) = 1/2 ft/sec

at v = 30secs

v(30) = 30 + 1/2

v(30) = 30 1/2 ft/sec

average velocity = v(30) - v(0)

average velocity = 30 1/2 - 1/2

average velocity of the balloon between t = 0 and t = 30 = 30 ft/sec

c) Velocity is the change of displacement of a body with respect to time.

v = dh/dt

v(t) = 2(1/2)t²⁻¹ + 1/2

v(t) = t + 1/2

The velocity of the balloon after 30secs will be;

v(30) = 30+1/2

v(30) = 30.5ft/sec

The velocity of the balloon after 30 secs is 30.5 feet/sec

6 0
3 years ago
A 120 g, 8.0-cm-diameter gyroscope is spun at 1000 rpm and allowed to precess. What is the precession period?
dolphi86 [110]

To solve this problem we will derive the expression of the precession period from the moment of inertia of the given object. We will convert the units that are not in SI, and finally we will find the precession period with the variables found. Let's start defining the moment of inertia.

I = MR^2

Here,

M = Mass

R = Radius of the hoop

The precession frequency is given as

\Omega = \frac{Mgd}{I\omega}

Here,

M = Mass

g= Acceleration due to gravity

d = Distance of center of mass from pivot

I = Moment of inertia

\omega= Angular velocity

Replacing the value for moment of inertia

\Omega= \frac{MgR}{MR^2 \omega}

\Omega = \frac{g}{R\omega}

The value for our angular velocity is not in SI, then

\omega = 1000rpm (\frac{2\pi rad}{1 rev})(\frac{1min}{60s})

\omega = 104.7rad/s

Replacing our values we have that

\Omega = \frac{9.8m/s^2}{(8*10^{-2}m)(104.7rad)}

\Omega = 1.17rad/s

The precession frequency is

\Omega = \frac{2\pi rad}{T}

T = \frac{2\pi rad}{\Omega}

T = \frac{2\pi}{1.17}

T = 5.4 s

Therefore the precession period is 5.4s

7 0
3 years ago
What frequency fapproach is heard by a passenger on a train moving at a speed of 18.0 m/s relative to the ground in a direction
Sergio039 [100]

Answer:

The frequency is 302.05 Hz.

Explanation:

Given that,

Speed = 18.0 m/s

Suppose a train is traveling at 30.0 m/s relative to the ground in still air. The frequency of the note emitted by the train whistle is 262 Hz .

We need to calculate the frequency

Using formula of frequency

f'=f(\dfrac{v+v_{p}}{v-v_{s}})

Where, f = frequency

v = speed of sound

v_{p} = speed of passenger

v_{s} = speed of source

Put the value into the formula

f'=262\times(\dfrac{344+18}{344-30})

f'=302.05\ Hz

Hence, The frequency is 302.05 Hz.

7 0
3 years ago
A stretched string has a mass per unit length of 5.40 g/cm and a tension of 17.5 N. A sinusoidal wave on this string has an ampl
kondaur [170]

Answer:

Part a)

y_m = 0.157 mm

part b)

k = 101.8 rad/m

Part c)

\omega = 579.3 rad/s

Part d)

here since wave is moving in negative direction so the sign of \omega must be positive

Explanation:

As we know that the speed of wave in string is given by

v = \sqrt{\frac{T}{m/L}}

so we have

T = 17.5 N

m/L = 5.4 g/cm = 0.54 kg/m

now we have

v = \sqrt{\frac{17.5}{0.54}}

v = 5.69 m/s

now we have

Part a)

y_m = amplitude of wave

y_m = 0.157 mm

part b)

k = \frac{\omega}{v}

here we know that

\omega = 2\pi f

\omega = 2\pi(92.2) = 579.3 rad/s

so we  have

k = \frac{579.3}{5.69}

k = 101.8 rad/m

Part c)

\omega = 579.3 rad/s

Part d)

here since wave is moving in negative direction so the sign of \omega must be positive

4 0
3 years ago
What is the classification of the reaction shown in the equation below?
ad-work [718]

Answer:

d

Explanation:

because is a reducing agent, O 2 is an oxidizing agent.

6 0
2 years ago
Other questions:
  • What does earths hydrosphere include
    11·1 answer
  • What is another term means balance in physics?
    15·2 answers
  • Explain why wet clothes that are hung on a washing line dry best
    13·1 answer
  • A rocket with a mass of 2.0 Ã 106 kg is designed to take off from the surface of the earth by burning fuel and ejecting it with
    5·1 answer
  • 2. Derive an expression for the final velocity of an object dropped from some height (h)
    11·1 answer
  • . For transverse waves, compare the direction that the particles move to
    13·1 answer
  • Where does the body get each of these
    5·2 answers
  • What is a delta?<br><br><br><br><br><br><br><br><br><br> 20 characters...
    14·1 answer
  • The earth’s gravity pulls with a force of 10N on each kilogram of an object mass calculate the weight of a 15kg sack of potatoes
    7·1 answer
  • Two identical charges are located 1 m apart and feel a 1 N repulsive electric force. What is the charge of each particle.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!