Explanation:
En un balde de 25 cm de altura se hace un orificio a 15 cm del suelo.calcula la velocidad de salida del agua
Answer:
The answer your looking for is option 2 - Inertia
Hello!
Recall the period of an orbit is how long it takes the satellite to make a complete orbit around the earth. Essentially, this is the same as 'time' in the distance = speed * time equation. For an orbit, we can define these quantities:
← The circumference of the orbit
speed = orbital speed, we will solve for this later
time = period
Therefore:

Where 'r' is the orbital radius of the satellite.
First, let's solve for 'v' assuming a uniform orbit using the equation:

G = Gravitational Constant (6.67 × 10⁻¹¹ Nm²/kg²)
m = mass of the earth (5.98 × 10²⁴ kg)
r = radius of orbit (1.276 × 10⁷ m)
Plug in the givens:

Now, we can solve for the period:

Answer:
"A turbine takes the kinetic energy of a moving fluid, air in this case, and converts it to a rotary motion. As wind moves past the blades of a wind turbine, it moves or rotates the blades. These blades turn a generator."
Displacement is B) the shortest distance between the starting point and the ending point of a motion
Explanation:
Displacement is a vector quantity; it is a vector connecting the initial position to the final position of motion of an object.
Since it is a vector, it has both a magnitude and a direction:
- The magnitude of the displacement is the length of the vector, therefore it corresponds to the shortest distance in a straight line between the starting point and the ending point of the motion
- The direction goes from the starting point to the ending point
Therefore, the correct answer is
B) the shortest distance between the starting point and the ending point of a motion
Note that displacement is very different from distance. Consider for example an object moving in a circle, returning to its initial position: in this case, the distance covered by the object is not zero (it is the length of the circle), however the displacement is zero, because the initial position corresponds to the ending position.
Learn more about distance and displacement:
brainly.com/question/3969582
#LearnwithBrainly