Answer:
0.5 rad / s
Explanation:
Moment of inertia of the disk I₁ = 1/2 MR²
M is mass of the disc and R is radius
Putting the values in the formula
Moment of inertia of the disc I₁ = 1/2 x 100 x 2 x 2
= 200 kgm²
Moment of inertia of man about the axis of rotation of disc
mass x( distance from axis )²
I₂ = 40 x 1.25²
= 62.5 kgm²
Let ω₁ and ω₂ be the angular speed of disc and man about the axis
ω₂ = tangential speed / radius of circular path
= 2 /1.25 rad / s
= 1.6 rad /s
ω₁ = ?
Applying conservation of angular moment ( no external torque is acting on the disc )
I₁ω₁ = I₂ω₂
200 X ω₁ = 62.5 X 1.6
ω₁ = 0.5 rad / s
Conductive current is the answer I d k
It would be Newton’s second law of motion
Answer:
All the observers are correct.
Explanation:
This is simply a problem of reference frames from which the motion of the book is being viewed by the various observers.
From their various reference frames, they are all correct.
Observer A must be in the inertial reference frame.
<em>Observers who can explain the behavior of the book and the car by using the relationship between the sum of the forces and changing velocity are said to be observers in inertial reference frames.</em>
This is clearly shown by what observer A noticed. There was a relative motion between the book and the car as she pointed out, making her to be in an inertial reference frame.
<em>Similarly, observers in inertial reference frames can also explain the changes in velocity of objects by considering the forces exerted on them by other objects.</em>
This is shown by observer B as he is able to notice how the force of the car affects the velocity of the book.
Observer C is actually in a non-inertial reference frame, as newtons law of force motion relationship are no longer observed. This occurs in the non inertial reference frame.
Answer:
Explanation:
The formula for Kinetic Energy is
. Filling in:
It looks like we only need 1 significant digit here but I'll give you 2 and you can round how you want.
KE = 2.4 × 10⁵ J